• Title/Summary/Keyword: Dose Evaluation

Search Result 1,884, Processing Time 0.029 seconds

Dose evaluation of workers according to operating time and outflow rate in a spent resin treatment facility

  • Byun, Jaehoon;Choi, Woo Nyun;Kim, Hee Reyoung
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3824-3836
    • /
    • 2021
  • Workers' safety from radiological exposure in a 1 ton/day capacity spent resin treatment facility was evaluated according to the operating times and outflow rate due to process related leakages. The conservative annual dose based on the operating times of the workers exceeded the dose limit by at least 7.38E+01 mSv for close work. The realistic dose range was derived as 1.62E+01 mSv-6.60E+01 mSv. The conservative and realistic annual doses for remote workers were 1.33E+01 mSv and 3.00E+00 mSv respectively, which were less than the dose limit. The MWR was identified as the major contributor to worker exposure within the 1 h period required for removal of radioactive materials. The dose considering both internal and external exposures without APF was derived to be 1.92E+01 mSv for conservative evaluation and 4.00E+00 mSv for realistic evaluation. Furthermore, the dose with APF was derived as 7.27E-01 mSv for conservative evaluation and 1.51E-01 mSv for realistic evaluation. Considering the APF for leakage from all parts, the dose range was derived as 1.25E+00 mSv-2.03E+00 mSv for conservative evaluation and 2.61E-01 mSv-4.23E-01 mSv for realistic evaluation. Hence, it was confirmed that radiological safety was secured in the event of a leakage accident.

Comparative Study of Dose Evaluation of Liquid Effluent in Nuclear Power Plants for Radiological Impact on the Environment Review

  • Seokju Hwang;Si-Young Kim;Deuk-Man Kim;Young Hwan Hwang;Jungkwon Son
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.22 no.1
    • /
    • pp.45-54
    • /
    • 2024
  • Currently, off-site dose calculations for nuclear power plants are conducted using a computer program (K-DOSE 60). The program is developed based on the regulatory guidelines of the Korea Institute of Nuclear Safety (KINS), which is a domestic nuclear regulatory agency. In this study, a domestic application of the International Atomic Energy Agency (IAEA) TRS (Technical Reports Series)-472 methodology for 3H and 14C in liquid effluents was studied. The dose-evaluation methods adopted and the program configuration for dose evaluation are described based on 3H and 14C in the liquid-effluent-evaluation module of the computer program. The accuracy of the program is verified by comparing the program-calculated results with hand calculation values. Furthermore, a comparative evaluation with LADTAP II, which is a liquid-effluent-evaluation methodology developed by the U.S. NRC (Nuclear Regulatory Commission), is performed. The result confirms that the program-calculated results for the IAEA TRS-472 methodology are consistent with the hand calculation values. Meanwhile, the result of comparative evaluation with LADTAP II indicates different results depending on the methodology used.

Geant4-DICOM Interface-based Monte Carlo Simulation to Assess Dose Distributions inside the Human Body during X-Ray Irradiation

  • Kim, Sang-Tae
    • International Journal of Contents
    • /
    • v.8 no.2
    • /
    • pp.52-59
    • /
    • 2012
  • This study uses digital imaging and communications in medicine (DICOM) files acquired after CT scan to obtain the absorbed dose distribution inside the body by using the patient's actual anatomical data; uses geometry and tracking (Geant)4 as a way to obtain the accurate absorbed dose distribution inside the body. This method is easier to establish the radioprotection plan through estimating the absorbed dose distribution inside the body compared to the evaluation of absorbed dose using thermo-luminescence dosimeter (TLD) with inferior reliability and accuracy because many variables act on result values with respect to the evaluation of the patient's absorbed dose distribution in diagnostic imaging and the evaluation of absorbed dose using phantom; can contribute to improving reliability accuracy and reproducibility; it makes significance in that it can implement the actual patient's absorbed dose distribution, not just mere estimation using mathematical phantom or humanoid phantom. When comparing the absorbed dose in polymethly methacrylate (PMMA) phantom measured in metal oxide semiconductor field effect transistor (MOSFET) dosimeter for verification of Geant4 and the result of Geant4 simulation, there was $0.46{\pm}4.69%$ ($15{\times}15cm^2$), and $-0.75{\pm}5.19%$ ($20{\times}20cm^2$) difference according to the depth. This study, through the simulation by means of Geant4, suggests a new way to calculate the actual dose of radiation exposure of patients through DICOM interface.

4-Dimensional dose evaluation using deformable image registration in respiratory gated radiotherapy for lung cancer (폐암의 호흡동조방사선치료 시 변형영상정합을 이용한 4차원 선량평가)

  • Um, Ki Cheon;Yoo, Soon Mi;Yoon, In Ha;Back, Geum Mun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.30 no.1_2
    • /
    • pp.83-95
    • /
    • 2018
  • Purpose : After planning the Respiratory Gated Radiotherapy for Lung cancer, the movement and volume change of sparing normal structures nearby target are not often considered during dose evaluation. This study carried out 4-D dose evaluation which reflects the movement of normal structures at certain phase of Respiratory Gated Radiotherapy, by using Deformable Image Registration that is well used for Adaptive Radiotherapy. Moreover, the study discussed the need of analysis and established some recommendations, regarding the normal structures's movement and volume change due to Patient's breathing pattern during evaluation of treatment plans. Materials and methods : The subjects were taken from 10 lung cancer patients who received Respiratory Gated Radiotherapy. Using Eclipse(Ver 13.6 Varian, USA), the structures seen in the top phase of CT image was equally set via Propagation or Segmentation Wizard menu, and the structure's movement and volume were analyzed by Center-to Center method. Also, image from each phase and the dose distribution were deformed into top phase CT image, for 4-dimensional dose evaluation, via VELOCITY Program. Also, Using $QUASAR^{TM}$ Phantom(Modus Medical Devices) and $GAFCHROMIC^{TM}$ EBT3 Film(Ashland, USA), verification carried out 4-D dose distribution for 4-D gamma pass rate. Result : The movement of the Inspiration and expiration phase was the most significant in axial direction of right lung, as $0.989{\pm}0.34cm$, and was the least significant in lateral direction of spinal cord, as -0.001 cm. The volume of right lung showed the greatest rate of change as 33.5 %. The maximal and minimal difference in PTV Conformity Index and Homogeneity Index between 3-dimensional dose evaluation and 4-dimensional dose evaluation, was 0.076, 0.021 and 0.011, 0.0 respectfully. The difference of 0.0045~2.76 % was determined in normal structures, using 4-D dose evaluation. 4-D gamma pass rate of every patients passed reference of 95 % gamma pass rate. Conclusion : PTV Conformity Index was more significant in all patients using 4-D dose evaluation, but no significant difference was observed between two dose evaluations for Homogeneity Index. 4-D dose distribution was shown more homogeneous dose compared to 3D dose distribution, by considering the movement from breathing which helps to fill out the PTV margin area. There was difference of 0.004~2.76 % in 4D evaluation of normal structure, and there was significant difference between two evaluation methods in all normal structures, except spinal cord. This study shows that normal structures could be underestimated by 3-D dose evaluation. Therefore, 4-D dose evaluation with Deformable Image Registration will be considered when the dose change is expected in normal structures due to patient's breathing pattern. 4-D dose evaluation with Deformable Image Registration is considered to be a more realistic dose evaluation method by reflecting the movement of normal structures from patient's breathing pattern.

  • PDF

Preliminary Radiation Exposure Dose Evaluation for Workers of the Landfill Disposal Facility Considering the Radiological Characteristics of Very Low Level Concrete and Metal Decommissioning Wastes (극저준위 콘크리트, 금속 해체방폐물의 방사선적 특성을 고려한 매립형 처분시설 방사선작업자 예비 피폭선량 평가)

  • Ho-Seog Dho;Ye-Seul Cho;Hyun-Goo Kang;Jae-Chul Ha
    • Journal of Radiation Industry
    • /
    • v.17 no.4
    • /
    • pp.509-518
    • /
    • 2023
  • The Kori Unit 1 nuclear power plant, which is planned to be dismantled after permanent shutdown, is expected to generate a large amount of various types of radioactive waste during the dismantling process. For the disposal of Very-low-level waste, which is expected to account for the largest amount of generation, the Korea Radioactive waste Agency (KORAD) is in the process of detailed design to build a 3-phase landfill disposal facility in Gyeongju. In addition, a large container is being developed to efficiently dispose of metal and concrete waste, which are mainly generated as Very low-level waste of decommissioning. In this study, based on the design characteristics of the 3-phase landfill disposal facility and the large container under development, radiation exposure dose evaluation was performed considering the normal and accident scenarios of radiation workers during operation. The direct exposure dose evaluation of workers during normal operation was performed using the MCNP computer program, and the internal and external exposure dose evaluation due to damage to the decommissioning waste package during a drop accident was performed based on the evaluation method of ICRP. For the assumed scenario, the exposure dose of worker was calculated to determine whether the exposure dose standards in the domestic nuclear safety act were satisfied. As a result of the evaluation, it was confirmed that the result was quite low, and the result that satisfied the standard limit was confirmed, and the radiational disposal suitability for the 3-phase landfill disposal facility of the large container for dismantled radioactive waste, which is currently under development, was confirmed.

Evaluation of Radiation Dose Reduction from the Automatic Exposure Control Technique in Different Manufactures Multi-Detector Computed Tomography (제조사별 다중 검출기 컴퓨터단층촬영 장비의 관전류 자동노출조절 기법의 방사선량 감소 평가)

  • Kim, Yeong-Ok;Seong, Yeol-Hun
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2011.11a
    • /
    • pp.563-571
    • /
    • 2011
  • The purpose of the study was to evaluation of the radiation dose reduction using various automatic exposure control (AEC) systems in different manufactures multi-detector computed tomography (MDCT). We used three different manufacturers for the study: General Electric Healthcare, Philips Medical systems and Siemens Medical Solutions. The general scanning protocol was created for the each examination with the same scanning parameters as many as possible. In the various AEC systems, the evaluation of reduced-dose was evaluated by comparing to fixed mAs with using body phantom. Finally, when we applied to AEC for three manufacturers, the radiation dose reduction decreased each 35.3% in the GE, 58.2% in the Philips, and 48.6% in the Siemens. This applies to variety of the AEC systems which will be very useful to reduce the dose and to maintain the high quality.

  • PDF

A Study on the Construction of MVCT Dose Calculation Model by Using Dosimetry Check™ (Dosimetry Check™를 이용한 MVCT 선량계산 모델 구축에 관한 연구)

  • Um, Ki-Cheon;Kim, Chang-Hwan;Jeon, Soo-Dong;Back, Geum-Mun
    • Journal of radiological science and technology
    • /
    • v.43 no.6
    • /
    • pp.431-441
    • /
    • 2020
  • The purpose of this study was to construct a model of MVCT(Megavoltage Computed Tomography) dose calculation by using Dosimetry Check™, a program that radiation treatment dose verification, and establish a protocol that can be accumulated to the radiation treatment dose distribution. We acquired sinogram of MVCT after air scan in Fine, Normal, Coarse mode. Dosimetry Check™(DC) program can analyze only DICOM(Digital Imaging Communications in Medicine) format, however acquired sinogram is dat format. Thus, we made MVCT RC-DICOM format by using acquired sinogram. In addition, we made MVCT RP-DICOM by using principle of generating MLC(Multi-leaf Collimator) control points at half location of pitch in treatment RP-DICOM. The MVCT imaging dose in fine mode was measured by using ionization chamber, and normalized to the MVCT dose calculation model, the MVCT imaging dose of Normal, Coarse mode was calculated by using DC program. As a results, 2.08 cGy was measured by using ionization chamber in Fine mode and normalized based on the measured dose in DC program. After normalization, the result of MVCT dose calculation in Normal, Coarse mode, each mode was calculated 0.957, 0.621 cGy. Finally, the dose resulting from the process for acquisition of MVCT can be accumulated to the treatment dose distribution for dose evaluation. It is believed that this could be contribute clinically to a more realistic dose evaluation. From now on, it is considered that it will be able to provide more accurate and realistic dose information in radiation therapy planning evaluation by using Tomotherapy.

A study of image evaluation and exposure dose with the application of Tube Voltage and ASIR of Low dose CT Using Chest Phantom (흉부 Phantom을 이용한 Low Dose CT의 관전압과 ASIR(Adaptive Statistical Iterative Reconstruction)적용에 따른 영상평가 및 피폭선량에 관한 연구)

  • Hwang, Hyeseong;Kim, Nuri;Jeong, Yoonji;Goo, Eunhoe;Kim, Kijeong
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.16 no.2
    • /
    • pp.9-14
    • /
    • 2014
  • Purpose: The purpose of this study has attempted to evaluate and compare the image evaluation and exposure dose by respectively applying Filtered Back Projection(FBP), the existing test method, and Adaptive Statistical Iterative Reconstruction(ASIR) with different values of tube voltage during the Low Dose Computed Tomography(LDCT). Materials and Methods: With the image reconstruction method as basis, Chest Phantom was utilized with the FBP and ASIR set at 10%, 20% respectively, and the change of Tube Voltage (100kVp, 120kVp). For image evaluation, Back ground noise, Signal to Noise ratio(SNR) and Contrast to Noise ratio(CNR) were measured, and, for dose evaluation, CTDIvol and DLP were measured respectively. The statistical analysis was tested with SPSS(ver. 22.0), followed by ANOVA Test conducted after normality test and homogeneity test. (p<0.05). Results: In terms of image evaluation, there was no outstanding difference in Ascending Aorta(AA) SNR and Infraspinatus Muscle(IM) SNR with the different values of ASIR application(p<0.05), but a significant difference with the different amount of tube voltage(p>0.05). Also, there wasn't noticeable change in CNR with ASIR and different amount of Tube Voltage (p<0.05). However, in terms of dose evaluation, CTDIvol and DLP showed contrasting results(p<0.05). In terms of CTDIvol, the measured values with the same tube voltage of 120kVp were 2.6mGy with No-ASIR and 2.17mGy with 20%-ASIR respectively, decreased by 0.43mGy, and the values with 100kVp were 1.61mGy with No-ASIR and 1.34mGy with 20%-ASIR, decreased by 0.27mGy. In terms of DLP, the measured values with 120kVp were $103.21mGy{\cdot}cm$ with No-ASIR and $85.94mGy{\cdot}cm$ with 20%-ASIR, decreased by $17.27mGy{\cdot}cm$(about 16.7%), and the values with 100kVp were $63.84mGy{\cdot}cm$ with No-ASIR and $53.25mGy{\cdot}cm$ with 20%-ASIR, a decrease by $10.62mGy{\cdot}cm$(about 16.7%). Conclusion: At lower tube voltage, the rate of dose significantly decreased, but the negative effects on image evaluation was shown due to the increase of noise. For the future, through the result of the experiment, it is considered that the method above would be recommended for follow-up patients or those who get health checkup as long as there is no interference on the process of diagnosis due to the characteristics of Low Dose examination.

  • PDF

Single-dose oral toxicity study of genetically modified silkworm expressing EGFP protein in ICR mouse

  • Jang, Kyung-Min;Kim, Sung-Gun;Park, Ji-Young;Choi, Won-Ho;Lee, Jae-Woo;Jegal, Hyeon-Young;Kweon, Soon-Jong;Choi, Kwang-Ho;Park, Jung-Ho
    • Korean Journal of Agricultural Science
    • /
    • v.43 no.1
    • /
    • pp.109-115
    • /
    • 2016
  • Silk has had a reputation as a luxurious and sensuous fabric but it is not popular due to the expensive price and poor durability. To develop the silk materials that apply the various industries, the artificially synthesized gene can be introduced into the silkworm and expressed in the silk gland. Transgenic silkworms for the mass production of green fluorescent silks are generated using a fibroin H-chain expression system. For commercial use, safety assessment of the transgenic silkworms is essential. The purpose of this study was to examine the potential acute oral toxicity of EGFP protein expressed in genetically modified (GM) fluorescence silkworm and to obtain the approximative lethal dose in the male and female at 6-weeks ICR mice. EGFP protein was fed at a dose of 2,000 mg/kg body weight in five male or five female mice. Mortalities, clinical findings and body weight changes were monitored for 1, 3, 7, 14 days after dosing. At the end of 14 day observation period, all mice were sacrificed, and the postmortem necropsy were performed. The test group was not observed death case. Also the effect was not admitted by test substance administration in common symptoms, the body weight and postmortem. The results of single-dose oral toxicity test showed that approximative lethal dose of EGFP protein expressed in fluorescence silkworm was considered to exceed the 2,000 mg/kg body weight in both sexes.

Comparative Analysis of Effective Dose Evaluation forTritium in Animal Product Ingestion According to Domestic and International Evaluation Methodologies Using Data from the Republic of Korea (대한민국의 데이터를 활용한 국내·외 평가 방법론에 따른 축산물 취식 시 삼중수소 유효선량 평가 비교·분석)

  • JeWan Park;YongMin Kim
    • Journal of Radiation Industry
    • /
    • v.17 no.4
    • /
    • pp.437-442
    • /
    • 2023
  • This study conducted a comparative analysis of dose evaluations for ingestion of animal products based on data from nuclear power plants in the Republic of Korea, using methodologies from the Republic of Korea, 'IAEA TRS-472', and 'CSA N288.1:14'. The research focused on tritium, the most significant constituent among the gaseous and liquid radioactive emissions. The combined evaluation of tritium, in the form of tritiated water (HTO) and organically bound tritium (OBT), yielded results of 1.143 μSv y-1 for the Republic of Korea, 0.965μSv y-1 for 'TRS-472', and 0.886μSv y-1 for 'N288.1:14'. Despite the Republic of Korea's guidelines not considering OBT, the evaluation results for the Republic of Korea were higher compared to other methodologies. This discrepancy was attributed to the unique approach of not considering the moisture content per individual in the calculations of plant and feed concentration in the Republic of Korea and the simultaneous consideration of specific-activity model and transfer model. The study highlights the necessity of developing dose evaluation models tailored to regional characteristics and underscores the importance of including OBT in these evaluations.