• Title/Summary/Keyword: Dose Estimation

Search Result 261, Processing Time 0.032 seconds

Monte Carlo Simulation for the Measurement of Entrance Skin Dose on Newborn and Infants (영·유아의 입사피부선량 측정을 위한 몬테카를로 시뮬레이션)

  • Kim, Sang-Tae
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.6
    • /
    • pp.346-352
    • /
    • 2012
  • Radiation dose estimation on the newborn and infants during radiation examinations, unlike for the adults, is not actively being progressed. Therefore, as an index to present exposure dose during radiation examinations on newborn and infants, entrance skin dose was measured, and the result was compared with results of monte carlo simulation to raise reproducibility of entrance skin dose measurement, and it was proved that various geometry implementation was possible. The resulting values through monte carlo simulation was estimated using normalization factors for entrance skin dose to calibrate radiation dose and then normalized to a unit X ray radiation field size. Average entrance skin dose per one time exposure was $78.41{\mu}Gy$ and the percentage error between measurement by dosimeter and by monte carlo simulation was found to be -4.77%. Entrance skin dose assessment by monte carlo simulation provides possible alternative method in difficult entrance skin dose estimation for the newborn and infants who visit hospital for actual diagnosis.

Risk Assessment for Noncarcinogenic Chemical Effects

  • Kodell Ralph L.
    • 대한예방의학회:학술대회논문집
    • /
    • 1994.02a
    • /
    • pp.412-415
    • /
    • 1994
  • The fundamental assumption that thresholds exist for noncarcinogenic toxic effects of chemicals is reviewed; this assumption forms the basis for the no-observed-effect level/ safety-factor (NOEL/SF) approach to risk assessment for such effects. The origin and evolution of the NOEL/SF approach are traced, and its limitations are discussed. The recently proposed use of dose-response modeling to estimate a benchmark dose as a replacement for the NOEL is explained. The possibility of expanding dose-response modeling of non carcinogenic effects to include the estimation of assumed thresholds is discussed. A new method for conversion of quantitative toxic responses to a probability scale for risk assessment via dose-response modeling is outlined.

  • PDF

A Review of Dose Finding Methods and Theory

  • Cheung, Ying Kuen
    • Communications for Statistical Applications and Methods
    • /
    • v.22 no.5
    • /
    • pp.401-413
    • /
    • 2015
  • In this article, we review the statistical methods and theory for dose finding in early phase clinical trials, where the primary objective is to identify an acceptable dose for further clinical investigation. The dose finding literature is initially motivated by applications in phase I clinical trials, in which dose finding is often formulated as a percentile estimation problem. We will present some important phase I methods and give an update on new theoretical developments since a recent review by Cheung (2010), with an aim to cover a broader class of dose finding problems and to illustrate how the general dose finding theory may be applied to evaluate and improve a method. Specifically, we will illustrate theoretical techniques with some numerical results in the context of a phase I/II study that uses trinary toxicity/efficacy outcomes as basis of dose finding.

Mathematical and Statistical Characterization of LD50 Estimation (LD50 산출방법에 있어서 수리 · 통계학적 특성)

  • Kim Se Ki;Kim Keun-Chong;Lee Byung Mu
    • Toxicological Research
    • /
    • v.20 no.4
    • /
    • pp.321-324
    • /
    • 2004
  • Lethal dose 50% ($LD_{50}$) has been commonly used as a parameter for the estimation of acute toxicity not only in animal experiment, but also in human study. Several methods to estimate $LD_{50}$ had been introduced, but Spearman-Karber and Berens-Karber method have been widely used due to their relative convenience and accuracy. However, $LD_{50}$ values estimated from the two methods showed inconsistency and variation depending on the characteristics of mortality data. In this study, the two methods were comparatively investigated in terms of accuracy and stability for the estimation of $LD_{50}$.

The Experience on Intake Estimation and Internal Dose Assessment by Inhalation of Iodine-131 at Korean Nuclear Power Plants (국내 원전에서 $^{131}I$ 내부 흡입 에 따른 섭취량 산정과 내부피폭 방사선량 평가 경험 몇 개선방향에 대한 연구)

  • Kim, Hee-Geun;Kong, Tae-Young
    • Journal of Radiation Protection and Research
    • /
    • v.34 no.3
    • /
    • pp.129-136
    • /
    • 2009
  • During the maintenance period at Korean nuclear power plants, internal exposure of radiation workers occurred by the inhalation of $^{131}I$ released to the reactor building when primary system opened. The internal radioactivity of radiation workers contaminated by $^{131}I$ was measured using a whole body counter. Intake estimation and the calculation of committed effective dose were also conducted conforming to the guidance of internal dose assessments from publications of International Commission on Radiological Protection. Because the uptake and excretion of $^{131}I$ in a body occur quickly and $^{131}I$ is accumulated in the thyroid gland, the estimated intakes showed differences depending on the counting time after intake. In addition, since ICRP publications do not provide the intake retention fraction (IRF) for whole body of $^{131}I$, the IRF for thyroid was substitutionally used to calculate the intake and subsequently this caused more error in intake estimation. Thus, intake estimation and the calculation of committed effective dose were conducted by manual calculation. In this study, the IRF for whole body was also calculated newly and was verified. During this process, the estimated intake and committed effective dose were reviewed and compared using several computer codes for internal dosimetry.

Investigation on Evaluation of Exposure Dose & Radiographic Technique for Diagnostic X-ray Examination (X선검진시의 촬영조건과 피폭선량 평가에 대한 조사)

  • Kim Kyung Hwan;Lee Jin Kyu
    • Journal of The Korean Radiological Technologist Association
    • /
    • v.27 no.2
    • /
    • pp.229-251
    • /
    • 2001
  • At the investigations with 200 institutes for analysis of factor associated with radiographic conditions reduction of patient exposure dose during X-ray diagnosis, 170 institutes or $85\%$ answered. For estimation of exposure dose the entrance

  • PDF

Organ dose conversion coefficients in CT scans for Korean adult males and females

  • Lee, Choonsik;Won, Tristan;Yeom, Yeon Soo;Griffin, Keith;Lee, Choonik;Kim, Kwang Pyo
    • Nuclear Engineering and Technology
    • /
    • v.54 no.2
    • /
    • pp.681-688
    • /
    • 2022
  • Dose monitoring in CT patients requires accurate dose estimation but most of the CT dose calculation tools are based on Caucasian computational phantoms. We established a library of organ dose conversion coefficients for Korean adults by using four Korean adult male and two female voxel phantoms combined with Monte Carlo simulation techniques. We calculated organ dose conversion coefficients for head, chest, abdomen and pelvis, and chest-abdomen-pelvis scans, and compared the results with the existing data calculated from Caucasian phantoms. We derived representative organ doses for Korean adults using Korean CT dose surveys combined with the dose conversion coefficients. The organ dose conversion coefficients from the Korean adult phantoms were slightly greater than those of the ICRP reference phantoms: up to 13% for the brain doses in head scans and up to 10% for the dose to the small intestine wall in abdominal scans. We derived Korean representative doses to major organs in head, chest, and AP scans using mean CTDIvol values extracted from the Korean nationwide surveys conducted in 2008 and 2017. The Korean-specific organ dose conversion coefficients should be useful to readily estimate organ absorbed doses for Korean adult male and female patients undergoing CT scans.

Geant4-DICOM Interface-based Monte Carlo Simulation to Assess Dose Distributions inside the Human Body during X-Ray Irradiation

  • Kim, Sang-Tae
    • International Journal of Contents
    • /
    • v.8 no.2
    • /
    • pp.52-59
    • /
    • 2012
  • This study uses digital imaging and communications in medicine (DICOM) files acquired after CT scan to obtain the absorbed dose distribution inside the body by using the patient's actual anatomical data; uses geometry and tracking (Geant)4 as a way to obtain the accurate absorbed dose distribution inside the body. This method is easier to establish the radioprotection plan through estimating the absorbed dose distribution inside the body compared to the evaluation of absorbed dose using thermo-luminescence dosimeter (TLD) with inferior reliability and accuracy because many variables act on result values with respect to the evaluation of the patient's absorbed dose distribution in diagnostic imaging and the evaluation of absorbed dose using phantom; can contribute to improving reliability accuracy and reproducibility; it makes significance in that it can implement the actual patient's absorbed dose distribution, not just mere estimation using mathematical phantom or humanoid phantom. When comparing the absorbed dose in polymethly methacrylate (PMMA) phantom measured in metal oxide semiconductor field effect transistor (MOSFET) dosimeter for verification of Geant4 and the result of Geant4 simulation, there was $0.46{\pm}4.69%$ ($15{\times}15cm^2$), and $-0.75{\pm}5.19%$ ($20{\times}20cm^2$) difference according to the depth. This study, through the simulation by means of Geant4, suggests a new way to calculate the actual dose of radiation exposure of patients through DICOM interface.

Use of big data for estimation of impacts of meteorological variables on environmental radiation dose on Ulleung Island, Republic of Korea

  • Joo, Han Young;Kim, Jae Wook;Jeong, So Yun;Kim, Young Seo;Moon, Joo Hyun
    • Nuclear Engineering and Technology
    • /
    • v.53 no.12
    • /
    • pp.4189-4200
    • /
    • 2021
  • In this study, the relationship between the environmental radiation dose rate and meteorological variables was investigated with multiple regression analysis and big data of those variables. The environmental radiation dose rate and 36 different meteorological variables were measured on Ulleung Island, Republic of Korea, from 2011 to 2015. Not all meteorological variables were used in the regression analysis because the different meteorological variables significantly affect the environmental radiation dose rate during different periods, and the degree of influence changes with time. By applying the Pearson correlation analysis and stepwise selection methods to the big dataset, the major meteorological variables influencing the environmental radiation dose rate were identified, which were then used as the independent variables for the regression model. Subsequently, multiple regression models for the monthly datasets and dataset of the entire period were developed.