• Title/Summary/Keyword: Doppler radar observation

Search Result 20, Processing Time 0.024 seconds

Use of Numerical Simulation for Water Area Observation by Microwave Radar (마이크로웨이브 레이더를 이용한 수역관측에 있어서의 수치 시뮬레이션 이용)

  • Yoshida, Takero;Rheem, Chang-Kyu
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.15 no.3
    • /
    • pp.208-218
    • /
    • 2012
  • Numerical simulation technique has been developed to calculate microwave backscattering from water surface. The simulation plays a role of a substitute for experiments. Validation of the simulation was shown by comparing with experimental results. Water area observations by microwave radar have been simulated to evaluate algorithms and systems. Furthermore, the simulation can be used to understand microwave scattering mechanism on the water surface. The simulation has applied to the various methods for water area observations, and the utilizations of the simulation are introduced in this paper. In the case of fixed radar, we show following examples, 1. Radar image with a pulse Doppler radar, 2. Effect of microwave irradiation width and 3. River observation (Water level observation). In addition, another application (4.Synthetic aperture radar image) is also described. The details of the applications are as follows. 1. Radar image with a pulse Doppler radar: A new system for the sea surface observation is suggested by the simulation. A pulse Doppler radar is assumed to obtain radar images that display amplitude and frequency modulation of backscattered microwaves. The simulation results show that the radar images of the frequency modulation is useful to measure sea surface waves. 2. Effect of microwave irradiation width: It is reported (Rheem[2008]) that microwave irradiation width on the sea surface affects Doppler spectra measured by a CW (Continuous wave) Doppler radar. Therefore the relation between the microwave irradiation width and the Doppler spectra is evaluated numerically. We have shown the suitable condition for wave height estimation by a Doppler radar. 3. River observation (Water level observation): We have also evaluated algorithms to estimate water current and water level of river. The same algorithms to estimate sea surface current and sea surface level are applied to the river observation. The simulation is conducted to confirm the accuracy of the river observation by using a pulse Doppler radar. 4. Synthetic aperture radar (SAR) image: SAR images are helpful to observe the global sea surface. However, imaging mechanisms are complicated and validation of analytical algorithms by SAR images is quite difficult. In order to deal with the problems, SAR images in oceanic scenes are simulated.

Ocean Surface Current Retrieval Using Doppler Centroid of ERS-1 Raw SAR Data

  • Kim Ji-Eun;Kim Duk-jin;Moon Wooil M.
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.590-593
    • /
    • 2004
  • Extraction of ocean surface current velocity offers important physical oceanographic parameters especially on understanding ocean environment. Although Remote Sensing techniques were highly developed, the investigation of ocean surface current using Synthetic Aperture Radar (SAR) is not an easy task. This paper presents the results of ocean surface current observation using Doppler Centroid of ERS-1 SAR data obtained off the coast of Korea peninsula. We employed the concept, in which Doppler frequency shift and the ocean surface current are closely related, to evaluate ocean surface current. Moving targets cause Doppler frequency shift of the back scattered radar waves of SAR, thus the line-of-sight velocity component of the scatters can be evaluated. The Doppler frequency shift can be measured by estimating the difference between Doppler Centroid of raw SAR data and reference Doppler Centroid. Theoretically, the Doppler Centroid is zero; however, squinted antenna which is affected by several physical factors causes Doppler Centroid to be nonzero. The reference Doppler Centroid can be obtained from measurements of sensor trajectory, attitude and Earth model. The estimated Doppler Centroid was compensated by considering the accurate attitude estimation of ERS-1 SAR. We could verify the correspondence between the estimated ocean surface current and observed in-situ data in the error bound.

  • PDF

Simulation and Evaluation of Sea Surface Observations Using a Microwave Doppler Radar (시뮬레이션을 이용한 마이크로웨이브 도플러 레이더 해면관측법의 평가)

  • Yoshida, Takero;Rheem, Chang-Kyu
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.18 no.2
    • /
    • pp.116-122
    • /
    • 2015
  • A simulation is applied to evaluate sea surface observations such as wave heights and surface currents by using a microwave Doppler radar. It is reported that the microwave irradiation width on the sea surface and Fourier transform time taken to sample data for frequency analysis affect Doppler spectra. To investigate the influences by these parameters, Doppler spectra are simulated with various numerical sea surface waves with currents. From the results, in the case of the microwave irradiation width is five times smaller than the wavelength of the sea surface wave, and the Fourier transform time is also five times shorter than the period of the sea surface wave, there is a possibility to measure wave heights accurately with a Doppler radar. In addition, relative surface currents can be estimated by analysis of long Fourier transform time. The simulation results showed the appropriate observing conditions with a microwave Doppler radar.

An Automotive Radar Target Tracking System Design using ${\alpha}{\beta}$ Filter and NNPDA Algorithm (${\alpha}{\beta}$ 필터 및 NNPDA 알고리즘을 이용한 차량용 레이더 표적 추적 시스템 설계)

  • Bae, JunHyung;Hyun, EuGin;Lee, Jong-Hun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.6 no.1
    • /
    • pp.16-24
    • /
    • 2011
  • Automotive Radar Systems are currently under development for various applications to increase accuracy and reliability. The target tracking is most important in single or multiple target environments for accuracy. The tracking algorithm provides smoothed and predicted data for target position and velocity(Doppler). To this end, the fixed gain filter(${\alpha}{\beta}$ filter, ${\alpha}{\beta}{\gamma}$ filter) and dynamic filter(Kalman filter, Singer-Kalman filter, etc) are commonly used. Gating is used to decide whether an observation is assigned to an existing track or new track. Gating algorithms are normally based on computing a statistical error distance between an observation and prediction. The data association takes the observation-to-track pairings that satisfied gating and determines which observation-to-track assignment will actually be made. For data association, NNPDA(Nearest Neighbor Probabilistic Data Association) algorithm is proposed. In this paper, we designed a target tracking system developed for an Automotive Radar System. We show the experimental results of the 77GHz FMCW radar sensor on the roads. Four tracking algorithms(${\alpha}{\beta}$ filter, ${\alpha}{\beta}{\gamma}$ filter, 2nd order Kalman filter, Singer-Kalman filter) have been compared and analyzed to evaluate the performance in test scenario.

A Suggestion for Data Assimilation Method of Hydrometeor Types Estimated from the Polarimetric Radar Observation

  • Yamaguchi, Kosei;Nakakita, Eiichi;Sumida, Yasuhiko
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.2161-2166
    • /
    • 2009
  • It is important for 0-6 hour nowcasting to provide for a high-quality initial condition in a meso-scale atmospheric model by a data assimilation of several observation data. The polarimetric radar data is expected to be assimilated into the forecast model, because the radar has a possibility of measurements of the types, the shapes, and the size distributions of hydrometeors. In this paper, an impact on rainfall prediction of the data assimilation of hydrometeor types (i.e. raindrop, graupel, snowflake, etc.) is evaluated. The observed information of hydrometeor types is estimated using the fuzzy logic algorism. As an implementation, the cloud-resolving nonhydrostatic atmospheric model, CReSS, which has detail microphysical processes, is employed as a forecast model. The local ensemble transform Kalman filter, LETKF, is used as a data assimilation method, which uses an ensemble of short-term forecasts to estimate the flowdependent background error covariance required in data assimilation. A heavy rainfall event occurred in Okinawa in 2008 is chosen as an application. As a result, the rainfall prediction accuracy in the assimilation case of both hydrometeor types and the Doppler velocity and the radar echo is improved by a comparison of the no assimilation case. The effects on rainfall prediction of the assimilation of hydrometeor types appear in longer prediction lead time compared with the effects of the assimilation of radar echo only.

  • PDF

Measurements of Cloud Raindrop Particles Using the Ground Optical Instruments and Small Doppler Radar at Daegwallyeong Mountain Site

  • Oh, Sung-Nam;Jung, Jae-Won
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.3
    • /
    • pp.293-306
    • /
    • 2013
  • Hydrometeor type and Drop Size Distribution (DSD) in cloud are the fundamental properties that may help explain the rain formation processes and determine the parameters of radar meteorology. This study presents a preliminary analysis of hydrometeor types and DSD data of cloud measured with a PARSIVEL (PARticle SIze and VELocity) optical disdrometer at the site of Cloud Physics Observation System (CPOS, $37^{\circ}41^{\prime}N$, $128^{\circ}45^{\prime}E$, 843 m from sea level) in Daegwallyeong mountainside of Korea. The method has been validated by comparing the observed rainfall rates with the computed ones from the fitted distribution, using the physical data such as DSD, terminal velocity, and rain intensity which were measured by a Micro-Rain Radar (MRR) and a PARSIVEL optical disdrometer. The analysis period started in three cases: on rainy days with light rain (15.5 mm), moderate rain (76 mm), and heavy rain (121 mm), from March to November 2007, respectively.

Observed tropical cyclone wind flow characteristics

  • Schroeder, John L.;Edwards, Becca P.;Giammanco, Ian M.
    • Wind and Structures
    • /
    • v.12 no.4
    • /
    • pp.349-381
    • /
    • 2009
  • Since 1998, several institutions have deployed mobile instrumented towers to collect research-grade meteorological data from landfalling tropical cyclones. This study examines the wind flow characteristics from seven landfalling tropical cyclones using data collected from eight individual mobile tower deployments which occurred from 1998-2005. Gust factor, turbulence intensity, and integral scale statistics are inspected relative to changing surface roughness, mean wind speed and storm-relative position. Radar data, acquired from the National Weather Service (NWS) Weather Surveillance Radar - 1988 Doppler (WSR-88D) network, are examined to explore potential relationships with respect to radar reflectivity and precipitation structure (convective versus stratiform). The results indicate tropical cyclone wind flow characteristics are strongly influenced by the surrounding surface roughness (i.e., exposure) at each observation site, but some secondary storm dependencies are also documented.

Automatic Detection and Analysis of Rip Currents at Haeundae Beach using X-band Marine Radar (항해용 X-band 레이다를 이용한 해운대해수욕장 이안류 자동탐지 및 특성 분석)

  • Oh, Chanyeong;Ahn, Kyungmo;Cheon, Se-Hyeon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.6
    • /
    • pp.485-492
    • /
    • 2019
  • The observation system has been developed to investigate the rip currents at Haeundae beach using X-band marine radar. X-band radar system can observe shape, size, and velocity of rip currents, which is difficult to obtain through field observation by conventional device. Algorithms which automatically detect locations, shapes, and magnitudes of rip currents were developed using time averaged X-band radar sea clutter images. X-band sea clutter images are transformed through 3D FFT into 2D wave number spectrum and frequency spectrum. Rip current velocities were estimated using differences in wave-number spectra and wave frequency spectra due to Doppler shift. The algorithm was verified by drift experiments. At Haeundae beach, the radar system exactly located the rip currents and found to be sustained for 1-2 days at fixed locations.

Wind Vector Quality Control Using Symmetry of Doppler Spectral Peak (도플러 스펙트럼 대칭성을 이용한 바람 벡터 품질 관리)

  • Kim, Min-Seong;Lee, Kyung-Hun;Kwon, Byung-Hyuk;Yoon, Hong-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.5
    • /
    • pp.841-848
    • /
    • 2020
  • The 1.29 GHz wind profiler radar is a remote observation device that is useful not only for calculating wind vectors in clear air, but also for detecting rainfall. The Doppler spectrum symmetry test is essential in the horizontal wind treatment process. Since asymmetry may be detected in rainfall cases, it is necessary to reflect in the wind calculation algorithm that the sign of the radial velocity is the same according to the magnitude of the vertical velocity. In the summer of 2017 (June, July), a wind vector calculation algorithm by Bragg scattering and Rayleigh scattering was developed using Changwon wind profiler data, and verified by comparing it with radiosonde data at 6 hour intervals.

CFD simulations of the flow field of a laboratory-simulated tornado for parameter sensitivity studies and comparison with field measurements

  • Kuai, Le;Haan, Fred L. Jr.;Gallus, William A. Jr.;Sarkar, Partha P.
    • Wind and Structures
    • /
    • v.11 no.2
    • /
    • pp.75-96
    • /
    • 2008
  • A better understanding of tornado-induced wind loads is needed to improve the design of typical structures to resist these winds. An accurate understanding of the loads requires knowledge of near-ground tornado winds, but observations in this region are lacking. The first goal of this study was to verify how well a CFD model, when driven by far field radar observations and laboratory measurements, could capture the flow characteristics of both full scale and laboratory-simulated tornadoes. A second goal was to use the model to examine the sensitivity of the simulations to various parameters that might affect the laboratory simulator tornado. An understanding of near-ground winds in tornadoes will require coordinated efforts in both computational and physical simulation. The sensitivity of computational simulations of a tornado to geometric parameters and surface roughness within a domain based on the Iowa State University laboratory tornado simulator was investigated. In this study, CFD simulations of the flow field in a model domain that represents a laboratory tornado simulator were conducted using Doppler radar and laboratory velocity measurements as boundary conditions. The tornado was found to be sensitive to a variety of geometric parameters used in the numerical model. Increased surface roughness was found to reduce the tangential speed in the vortex near the ground and enlarge the core radius of the vortex. The core radius was a function of the swirl ratio while the peak tangential flow was a function of the magnitude of the total inflow velocity. The CFD simulations showed that it is possible to numerically simulate the surface winds of a tornado and control certain parameters of the laboratory simulator to influence the tornado characteristics of interest to engineers and match those of the field.