• Title/Summary/Keyword: Doppler frequency

Search Result 554, Processing Time 0.023 seconds

The Relation of Time Resolution and Radial Velocity Accuracy of a CW Doppler Radar (CW 도플러 레이더의 시각 분해능과 시선 속도 정확도의 관계)

  • Ryu, Chung-Ho;Jang, Yong-Sik;Choi, Ik-Hwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.7
    • /
    • pp.815-821
    • /
    • 2012
  • A CW Doppler radar can measure radial velocity of an object. It detects a Doppler frequency shift that is proportioned to radial velocity of a moving object. To detect a Doppler frequency shift, FFT(Fast Fourier Transform) is conducted. In this process, the time domain received signal is transformed to a frequency domain. A number of FFT affects not only the time resolution but also signal to noise ratio of received signal. So finally it is related with a radial velocity accuracy. Therefore in this paper, it is described the relation of time resolution and the radial velocity accuracy.

Improved Equalization Technique of OFDM Systems Using Block Type Pilot Arrangement (Block Type 파일럿 배치를 적용한 OFDM 시스템의 등화 기법 개선)

  • Kim Whan-Woo;Kim Ji-Heon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.3
    • /
    • pp.113-120
    • /
    • 2006
  • This paper is concerned with a equalization technique for Orthogonal Frequency Division Multiplexing (OFDM) systems based on a block type pilot arrangement over slow fading channels. The bit rates obtained in underwater channels are relatively modest compared to some other communication channels such as cellular phones or indoor wireless systems. Consequently. the Doppler effect is the important parameter in tracking a channel. In case of a coherent demodulation scheme, the residual mean phase errors due to Doppler frequency may be fatal for the performance of the system. The equalizer could not solely handle mean Doppler shift. To account for the common Doppler effect a phase error tracking loop is used with the frequency equalizer. so that the rotation errors are avoided. Furthermore. simulations show that we can reduce the computational load of the tracking loop with negligible effect on performance.

Compact Doppler Sensor Using Oscillator Type Active Antenna (능동 발진 안테나를 이용한 소형 도플러 센서)

  • Yun, Gi-Ho
    • Journal of IKEEE
    • /
    • v.15 no.1
    • /
    • pp.49-56
    • /
    • 2011
  • In this paper, a compact doppler sensor with oscillator type active antenna operating at 2.4GHz frequency band is proposed to measure the distance or speed of a moving object. The active antenna has been realized by oscillator using radiator, patch antenna, as its resonator. The oscillation frequency is shifted depending on approaching of the object, and a detection circuit discriminates the frequency deviation. The oscillator type active antenna has been designed and simulated. The prototype fabricated has a very small circular disk type of diameter 30mm and height 4.2mm. As for antenna performance, broadside radiation pattern with beamwidth of $130^{\circ}$ and oscillation frequency of 2.373GHz has been measured. Test results as a doppler sensor shows that doppler signal voltage of about 190mV has been obtained for conducting plate moving 1 meter away from the sensor. And, doppler signal voltage has been linearly increased to the ground from 4.5m height by free-falling the sensor.

Extraction and analysis of doppler frequency of wind turbines and effect on radar signals (산악지형에 설치된 풍력발전단지에 의한 도플러 주파수 추출 및 분석)

  • Jung, Joo-Ho;Kang, Ki-Bong;Kim, Min;Kim, Jeung-Yuen;Park, Sang-Hong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.9
    • /
    • pp.947-952
    • /
    • 2015
  • To supplement energy needs and take advantage of renewable energy sources, many wind farms are currently being built in mountainous areas under the supervision of the Korean government. However, operation of these wind farms can cause serious threats to national security due to Doppler modulation from the wind turbines causing interference with military radar operating in the vicinity. Therefore it is necessary to develop methods to analyze the Doppler frequency during the operation of wind turbines and the effect on radar signals. Based on modeling of the mountainous region, blockage analysis, turbine motion and the radar signals, this paper proposes a signal processing method to extract and analyze the Doppler frequency. Simulation results showed the change of Doppler frequency over time caused by the geometry of the mountainous area and the wind turbine.

Target Acquisition and Tracking of Tracking Radar (추적레이다의 표적 탐지 및 추적 기술 동향)

  • Shin, Han-Seop;Choi, Jee-Hwan;Kim, Dae-Oh;Kim, Tae-Hyung
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.7 no.1
    • /
    • pp.113-118
    • /
    • 2009
  • In this paper, we described the model of noise, target for tracking radar and range tracking, angle tracking, and Doppler frequency tracking for target acquisition and tracking. Target signal as well as the noise signal is modeled as random process varying with elapsed time. This paper addresses three areas of radar target tracking: range tracking, angle tracking, and Doppler frequency tracking. In general, range tracking is prerequisite to and inherent in both angle and Doppler frequency tracking systems. First, we introduced the several range tracking and described techniques for achieving range tracking. Second, we described the radar angle tracking techniques including conical scan, sequential lobing, and monopulse. Finally, we presented concepts and techniques for Doppler frequency tracking for several radar types.

  • PDF

ISI and PAPR Immune IEEE 802.11p Channels Based on Single-Carrier Frequency Domain Equalizer

  • Ali, Ahmed;Dong, Wang;Renfa, Li;Eldesouky, Esraa
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.11
    • /
    • pp.5513-5529
    • /
    • 2016
  • Doppler Effect is a prominent obstacle in vehicular networks, which dramatically increase the Bit-Error-Rate (BER). This problem is accompanied with the presence of the Orthogonal Frequency Division Multiplexing (OFDM) systems in which the Doppler shift interrupts the subcarriers orthogonality. Additionally, Inter-Symbol Interference (ISI) and high Peak-to-Average Power Ratio (PAPR) are likely to occur which corrupt the received signal. In this paper, the single-carrier combined with the frequency domain equalizer (SC-FDE) is utilized as an alternative to the OFDM over the IEEE 802.11p uplink vehicular channels. The Minimum Mean Squared Error (MMSE) and Zero-Forcing (ZF) are employed in order to study the impact of these equalization techniques along with the SC-FDE on the propagation medium. In addition, we aim to enhance the BER, improve the transmitted signal quality and achieve ISI and PAPR mitigation. The proposed schemes are investigated and we found that the MMSE outperforms the ZF equalization under different Doppler shift effects and modulations.

Maximum Likelihood Based Doppler Estimation and Target Detection with Pulse Code Modulated Waveform (ML 기법을 이용한 PCM 파형에서의 표적 탐지 및 도플러 추정)

  • Yang, Eunjung;Lee, Heeyoung;Song, Junho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.12
    • /
    • pp.1275-1283
    • /
    • 2014
  • Characteristics of PCM(Pulse Code Modulation) waveform are suitable for target tracking. Especially in terms of dwell time, it is desirable to detect and track a moving target with the single PCM waveform for a MFR(Multi-Function Radar) which carries out multiple tasks. General PCM waveform processing includes Doppler filter bank caused by the characteristics of ambiguity function, to detect target and estimate Doppler frequency, which induces hardware burden and computational complexity. We propose a ML(Maximum Likelihood) based Doppler estimator for a PCM waveform, which is the closed form suboptimal solution and computationally efficient to estimate Doppler frequency and detect a moving target.

Range estimation of underwater vehicles using superimposed chirp signals (중첩된 처프 신호를 이용한 수중 이동체의 거리 추정)

  • Hyung-in Ra;Kyung-won Lee;Chang-hyun Youn;Ki-man Kim
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.6
    • /
    • pp.511-518
    • /
    • 2023
  • Accurate ranging is one of the key factors in the test and evaluation process of underwater vehicles. In particular, when estimating range using Time of Arrival (ToA) values, signals such as Linear Frequency Modulation (LFM), a chirp signal, are highly applicable due to their correlated nature. However, in a Doppler shift environment with mobility, measurement errors may occur due to the range-Doppler coupling effect. In this paper, we propose a signal that compensates for the distance-Doppler coupling effect to reduce the measurement error of the arrival time value. The proposed signal is constructed by superimposing two types of LFM signals, and the range-Doppler coupling effect can be minimized. Through simulations, it is confirmed that the proposed signal is a way to compensate for the distance-Doppler coupling effect in the distance estimation of underwater mobile bodies, reducing the measurement error of the arrival time value.

Development of Portable Arrhythmia Moniter Using Microcomputer(I) (마이크로 컴퓨터를 이용한 휴대용 부정맥 모니터의 개발(I)-하드웨어 설계를 중심으로-)

  • 이명호;안재봉
    • Journal of Biomedical Engineering Research
    • /
    • v.7 no.2
    • /
    • pp.169-182
    • /
    • 1986
  • Pulsed ultrasonic Doppler system is a useful diagnostic instrument to measure blood-flow-velocity, velocity profile, and volume-blood-flow. This system is more powerful compare with 2-dimensional B-scan tissue image. A system has been deve- loped and ii being evaluated using TMS 32010 DSP. We use this DSP for the purpose of real-time spectrum analyzer to obtain spectrogram in singlegate pulsed Doppler system and for the serial comb filter to cancel clutter and zero crossing counter to estimate Doppler mean frequency in multigate pulsed Doppler system. The Doppler shift of the backscattered signals is sensed in a phase detector. This Doppler signal corresponds to the mean velocity over a some region in space defined by the ultrasonic beam dimensions, transmitted pulse duration, and transducer ban(iwidth. Multi- gate pulsed Doppler system enable the transcutaneous and simultaneous assessment of the velocities in a number of adjacent sample volumes as a continuous function of time. A multigate pulsed Doppler system processing the information originating from presented.

  • PDF

Instantaneous Frequency Estimation of Doppler Signal using Wavelet Transform (웨이브릿 변환을 이용한 도플러 신호의 순간 주파수 추정)

  • Son Joong-Tak;Lee Seung-Houn;Park Kil-Houm
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.3 s.303
    • /
    • pp.99-106
    • /
    • 2005
  • Instantaneous Frequency(IF) of Doppler signals is used to get the information of relative velocity and miss distance between a missile and the corresponding target. Though Short-Time Fourier Transform(STFT) is mainly used to estimate IF, it has many errors in wide band signals where frequency changes sharply. Because it has a fixed window in time and frequency axes. This paper deals with IF estimation of Doppler signal using a Continuous Wavelet Transform(CWT) which has adaptive window in time and frequency axes. The proposed method is able to estimate IF regardless of frequency changes because it has a narrow window in high frequency band and a wide window in low frequency band. The experimental results demonstrate that the proposed method outperforms STFT in estimating IF.