• Title/Summary/Keyword: Doppler Fading

Search Result 102, Processing Time 0.015 seconds

A closed loop wireless transmission method adaptive to mobile speed and its performance analysis (이동 속도 감응형 폐순환 무선전송기법 및 성능 분석)

  • Ha, Youngseok;Choi, Jeungwon;Kim, Donghyun;Oh, Hyukjun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.12
    • /
    • pp.1666-1672
    • /
    • 2019
  • A closed loop wireless transmission method adaptive to mobile unit speed is proposed in this paper. A mobile communication node measures the mobile speed based on the transmitted pilot signals through Doppler frequency estimation, and it changes the transmission period of pilot signals as per estimated mobile speed adaptively. The pilot signals with the different transmission periods are transmitted using the different PN sequences with the previous ones without any explicit information about the new period. The corresponding receiver node can detect and extract the transmitted pilot signals through blind search of the transmitted PN sequences of the pilot signals, and it can demodulate and decode the transmitted information using the channel estimation results based on the detected pilot signals. The performance of the proposed method had been analyzed through the simulation under the fading channel environments and compared with the previous methods. The simulation results showed performance improvement of the proposed method over the existing ones.

Performance Analysis of OFDM-based Underwater Acoustic Communication System by Repeated Transmit Diversity Technique (반복 전송 다이버시티 기법에 따른 OFDM 기반 수중 음향 통신 시스템의 실해역 성능 분석)

  • Chae, Kwang-Young;Ko, Hak-Lim;Kim, Min-Sang;Cho, Yong-Ho;Im, Tae-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.11
    • /
    • pp.1434-1442
    • /
    • 2019
  • In this paper, the channel change was continuously measured for 24 hours from July 5, 2017 on the coast near Deokjeok-do, Incheon. The underwater channel has various channel environment characteristics as the change in the time axis and the change in the frequency axis occurs in real time, and the underwater communication performance decreases due to the multipath fading and the Doppler effect. Therefore, in this study, we performed the OFDM system performance analysis in the underwater channel environment by applying the repetitive transmission diversity scheme in the time and frequency domain to improve the communication performance in the real-world underwater communication environment. Using the collected data, we compared the channel environment in the time and frequency domain and analyzed the BER performance according to the pilot spacing and the number of repetitive transmissions in the time and frequency axis.