• Title/Summary/Keyword: Doppler Estimates

Search Result 46, Processing Time 0.022 seconds

A Modified Delay and Doppler Profiler based ICI Canceling OFDM Receiver for Underwater Multi-path Doppler Channel

  • Catherine Akioya;Shiho Oshiro;Hiromasa Yamada;Tomohisa Wada
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.7
    • /
    • pp.1-8
    • /
    • 2023
  • An Orthogonal Frequency Division Multiplexing (OFDM) based wireless communication system has drawn wide attention for its high transmission rate and high spectrum efficiency in not only radio but also Underwater Acoustic (UWA) applications. Because of the narrow sub-carrier spacing of OFDM, orthogonality between sub-carriers is easily affected by Doppler effect caused by the movement of transmitter or receiver. Previously, Doppler compensation signal processing algorithm for Desired propagation path was proposed. However, other Doppler shifts caused by delayed Undesired signal arriving from different directions cannot be perfectly compensated. Then Receiver Bit Error Rate (BER) is degraded by Inter-Carrier-Interference (ICI) caused in the case of Multi-path Doppler channel. To mitigate the ICI effect, a modified Delay and Doppler Profiler (mDDP), which estimates not only attenuation, relative delay and Doppler shift but also sampling clock shift of each multi-path component, is proposed. Based on the outputs of mDDP, an ICI canceling multi-tap equalizer is also proposed. Computer simulated performances of one-tap equalizer with the conventional Time domain linear interpolated Channel Transfer Function (CTF) estimator, multi-tap equalizer based on mDDP are compared. According to the simulation results, BER improvement has been observed. Especially, in the condition of 16QAM modulation, transmitting vessel speed of 6m/s, two-path multipath channel with direct path and ocean surface reflection path; more than one order of magnitude BER reduction has been observed at CNR=30dB.

Target Velocity Estimation using FFT Method

  • Lee, Kwan Hyeong
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.3
    • /
    • pp.1-8
    • /
    • 2020
  • This paper studied a method of estimating target information using a radar in wireless communication. Position information on the target can be estimated angle, distance and velocity. The velocity information can be estimated since the Doppler frequency is changed in the moving target. The signal incident on the receiving array antenna is multiplied by the delay time and the reference signal to represent the output signal. This output signal is estimated by applying FFT (Fast Fourier Transform) after calculating signal correlation through correlation integrator. Since the output signal must be calculated within the correlator, it should be processed with the Dwell time. The correlation signal of the correlation integrator outside this Dwell time is indicated by the velocity measurement error. The FFT is applied to the signal that has passed through the correlated integrator in order to estimate the distance of the signal. The Doppler resolution must be improved because the FFT estimates target information using the Doppler information. The Doppler resolution decreases with increasing the integration time. The velocity information estimation should have no spread of the velocity. As a result of the simulation, there was no spread of the target velocity in this study.

The Effect of Sampling Frequency and Pulse Bandwidth on Estimating Mean Frequencies in an Ultrasonic Doppler System using the Second-Order Sampling (2차 샘플링을 이용한 초음파 도플러 시스템에서 샘플링 주파수 펄스 대역폭이 평균 주파수 측정에 미치는 영향)

  • Ahn, Young-Bok;Park, Song-Bai
    • The Journal of the Acoustical Society of Korea
    • /
    • v.9 no.3
    • /
    • pp.48-55
    • /
    • 1990
  • We analyze the effect of second-order sampling on estimating the mean frequency of the Doppler signal. In order to reduce the sampling frequency of analogue-to-digital converter, it is possible to obtain the Doppler signal by sampling the radio frequency echo signal with the low frequence of $4f_0$/5 or $4f_0$/9 instead of $4f_0$, where $f_0$ is the center frequency of the transmitted signal. The computer simulation and experiments show that if the narrowband signal is transmitted as is usual in the Doppler system, the error of the mean frequency estimates due to the low sampling frequency is negligible.

  • PDF

Analysis of Clutter Effects in a Weather Radar (기상 레이다에서의 클러터 영향 분석)

  • Lee, Jonggil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.9
    • /
    • pp.1641-1648
    • /
    • 2016
  • A weather radar estimates Doppler frequency and width of Doppler spectrum from the received weather signal which represents the return echoes from rain or dust particles in a corresponding area. These estimates are very important parameters since they are directly related to precipitation, wind velocity and degree of turbulence. Therefore, these estimated values should be highly reliable to obtain accurate weather information. However, the echoes of a weather radar include both the weather signal and the clutter which occurred from ground reflection or moving objects, etc. The existence of the clutter in the echoes may cause serious errors in the estimation of weather-related parameters. Therefore, in this paper, models are developed to represent the weather signal and the clutter for the purpose of analyzing estimation errors caused by the strong clutter echoes. Using these models, various return echoes according to the weather signal and clutter power are simulated to analyze the effects of the clutter.

A Study on the Doppler Compensation Technique of 2-Step Kalman Filter in Mobile Satellite Communication System (이동위성 통신 시스템에서 2단 칼만필터에 의한 도풀러 보상기법에 관한 연구)

  • 강희조;고봉진;조성언
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.2
    • /
    • pp.166-176
    • /
    • 2000
  • In this paper, the LEO system signal degradation is mainly due to fading and doppler shift, so that the analysis of the signal degradation and compensation techniques are very important. This paper propose a Kalman filter based two step Automatic Frequency Control(AFC) to combat large and time variant frequency offset in low earth orbit satellite communication systems. The proposed Kalman AFC method estimates a frequency offset in two steps, I. e., coarse and fine estimations, extending the frequency acquisition range to even for than the symbol rate. Furthermore, it can track well a time variation of frequency offset. It is shown that the proposed compensator is able to compensate for doppler shift more than several KHz.

  • PDF

People Counting and Coordinate Estimation Using Multiple IR-UWB Radars (다수의 IR-UWB 레이다를 이용한 인원수 및 좌표 추정 연구)

  • Tae-Yun Kim;Se-Won Yoon;In-Oh Choi;Joo-Ho Jung;Sang-Hong Park
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.19 no.1
    • /
    • pp.39-46
    • /
    • 2024
  • In this paper, we propose an efficient method for estimating the number of people and their locations using multiple IR-UWB radar sensors. Using three IR-UWB radar sensors in the indoor space, the measured signal from the target is processed to remove the clutter using rejection methods. Then, to further remove the clutter and to determine the presence of the human, the time-frequency image representing the micro-Doppler is obtained and classified by a convolutional neural network. Finally, the system finds the number of human objects and estimates each position in a two-dimensional space. In experiments using the measured data, the system successfully estimated the location and number of individuals with a high accuracy ≈ 88.68 %.

Effect of Doppler Bandwidth on the Performance of Channel Sounding (도플러 대역폭이 채널 추정의 성능에 미치는 영향)

  • Jo, Jun-Ho;Choi, Seyeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.11
    • /
    • pp.5841-5846
    • /
    • 2013
  • In this work, we consider the effect of doppler bandwidth on the performance of channel sounding. We develop the mathematical formulation of the problem and compare the MMSE channel estimator to the simple correlator. Examples of the performance of the MMSE and correlator estimators are presented for the single-input single-output (SISO) case with various values of Doppler bandwidth to assess the impact of time variation. The results show that as the $f_dT$ product increases the performance of both the MMSE and correlator estimates gets worse, and that the performance of the MMSE estimator improves relative to the correlator.We also consider case that the exact statistics of the channel are unknown It is shown that when the mismatch is not too large, the MMSE estimator with mismatch still does better than the simple correlator, but if the mismatch is large, then the correlator can do better.

Improvement of Current Velocity Estimation Method in an ADCP (ADCP에서의 유속 추정 방법 개선에 관한 연구)

  • Lee, Jonggil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.9
    • /
    • pp.1818-1825
    • /
    • 2017
  • An Acoustic Doppler Current Profiler(ADCP) measures the current velocity and analyzes the degree of turbulence using Doppler effects of ultrasonic waves. Therefore, the autocorrelation or FFT spectrum estimates are obtained for extraction of current velocity in each spatial region. However, if the correlation method does not satisfy the assumption that the return signal spectra are symmetric Gaussian, the large bias errors can occur. Also, the accurate estimation of autocorrelation or FFT spectrum is difficult due to the short acquisition interval when the rapid changes of current velocity occur. Thus, in this paper, the estimation method of the autoregressive spectrum peak is suggested for the accurate current velocity measurement of both symmetric and asymmetric spectra. It is shown that estimation quality can be improved using the suggested method comparing with the conventional methods. Many return signals under the various environment are simulated and the results are compared and analyzed for evaluation of the suggested method.

Clutter Removal in a Weather Radar Using an Adaptive Array Antenna (적응배열 안테나를 이용한 기상 레이다에서의 클러터 제거)

  • Lee, Jong-Gil
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.6C
    • /
    • pp.398-402
    • /
    • 2011
  • High resolution windspeed profile measurements are needed in a weather radar to provide the reliable information of rapidly changing weather conditions. However, it is necessary to remove both stationary and moving clutter to obtain the accurate pulse pair estimates. To overcome these problems, a simple adaptive array antenna may be applied to clutter removal. Using the simulated weather and clutter data, the clutter cancellation capability is analyzed for a weather radar with an adaptive antenna. The pulse pair estimates obtained from the adaptive weather radar are compared with those of the raw data.

Speed estimation of sound-emitted objects through convergence of sound information analysis and smart device technology (음향 정보 분석과 스마트 기기 기술의 융합을 통한 사물의 속력 측정)

  • Nam, Yong-Wook;Kim, Yong-Hyuk
    • Journal of the Korea Convergence Society
    • /
    • v.6 no.5
    • /
    • pp.233-240
    • /
    • 2015
  • In this paper, we present an algorithm that estimates the speed of a moving object only using its sound information. In general, the speed gun projects the incident light onto a moving object and measures the frequency variation of the scattered light. Then the speed is measured by this frequency difference. In our study, instead of light information, we measure the speed by sound frequency difference when the object is coming and moving away. In our experiments on the speed measurement, on average the error of 6.08% was obtained. Utilizing this algorithm for smart device, we can measure the speed of a moving object without sensor that measures the frequency of the light.