• Title/Summary/Keyword: Dopamine and serotonin

Search Result 123, Processing Time 0.027 seconds

Impact of High Fat Diet-induced Obesity on the Plasma Levels of Monoamine Neurotransmitters in C57BL/6 Mice

  • Kim, Minjeong;Bae, SeungJin;Lim, Kyung-Min
    • Biomolecules & Therapeutics
    • /
    • v.21 no.6
    • /
    • pp.476-480
    • /
    • 2013
  • Obesity is one of the most serious health problems in developed countries. It negatively affects diverse aspects of human wellbeing. Of these, a relationship between obesity and depression is widely recognized but biomarkers for assessment of obesity-associated mood changes in animal obesity models are rarely known. Here we explored the link between obesity and the plasma levels of monoamine neurotransmitters involved in mood control using a sensitive UPLC/MSMS technique in high fat diet (HFD)-induced obesity model in male C57BL/6 mice to explore the potential utility of plasma tests for obesity-associated mood change. HFD (60% of total calories, 8 weeks) induced significantly higher weight gains in body (+37.8%) and fat tissue (+306%) in male C57BL/6 mice. Bioanalysis of serotonin, dopamine and norepinephrine in plasma at 8 weeks of HFD revealed that serotonin decreased significantly in the obese mice when compared to normal diet-fed mice ($2.7{\pm}0.6$ vs $4.3{\pm}2.0ng/ml$, N=8). Notably, a negative correlation was found between the levels of serotonin and body weight gains. Furthermore, principal component analysis (PCA) with the individual levels of neurotransmitters revealed that plasma levels of dopamine and serotonin could apparently differentiate the obese mice from lean ones. Our study demonstrated that blood plasma levels of neurotransmitters can be employed to evaluate the mood changes associated with obesity and more importantly, provided an important clue for understanding of the relationship between obesity and mood disorders.

Alterations in dopamine and glutamate neurotransmission in tetrahydrobiopterin deficient spr-/- mice: relevance to schizophrenia

  • Choi, Yong-Kee;Tarazi, Frank I.
    • BMB Reports
    • /
    • v.43 no.9
    • /
    • pp.593-598
    • /
    • 2010
  • Tetrahydrobiopterin ($BH_4$) is a pivotal cofactor for enzymes responsible for the synthesis and release of monoamine neurotransmitters including dopamine and serotonin as well as the release of glutamate. Deficiencies in $BH_4$ levels and reduced activities of $BH_4$-associated enzymes have been recently reported in patients with schizophrenia. Accordingly, it is possible that abnormalities in the biochemical cascades regulated by $BH_4$ may alter DA, 5-HT and Glu neurotransmission, and consequently contribute to the pathophysiology of different neuropsychiatric diseases including schizophrenia. The development of a novel strain of mutant mice that is deficient in $BH_4$ by knocking out the expression of a functional sepiapterin reductase gene (spr -/-) has added new insights into the potential role of $BH_4$ in the pathophysiology and improved treatment of schizophrenia.

Design, Synthesis, and Functional Evaluation of 1, 5-Disubstituted Tetrazoles as Monoamine Neurotransmitter Reuptake Inhibitors

  • Paudel, Suresh;Wang, Shuji;Kim, Eunae;Kundu, Dooti;Min, Xiao;Shin, Chan Young;Kim, Kyeong-Man
    • Biomolecules & Therapeutics
    • /
    • v.30 no.2
    • /
    • pp.191-202
    • /
    • 2022
  • Tetrazoles were designed and synthesized as potential inhibitors of triple monoamine neurotransmitters (dopamine, norepinephrine, serotonin) reuptake based on the functional and docking simulation of compound 6 which were performed in a previous study. The compound structure consisted of a tetrazole-linker (n)-piperidine/piperazine-spacer (m)-phenyl ring, with tetrazole attached to two phenyl rings (R1 and R2). Altering the carbon number in the linker (n) from 3 to 4 and in the spacer (m) from 0 to 1 increased the potency of serotonin reuptake inhibition. Depending on the nature of piperidine/piperazine, the substituents at R1 and R2 exerted various effects in determining their inhibitory effects on monoamine reuptake. Docking study showed that the selectivity of tetrazole for different transporters was determined based on multiple interactions with various residues on transporters, including hydrophobic residues on transmembrane domains 1, 3, 6, and 8. Co-expression of dopamine transporter, which lowers dopamine concentration in the biophase by uptaking dopamine into the cells, inhibited the dopamine-induced endoctytosis of dopamine D2 receptor. When tested for compound 40 and 56, compound 40 which has more potent inhibitory activity on dopamine reuptake more strongly disinhibited the inhibitory activity of dopamine transporter on the endocytosis of dopamine D2 receptor. Overall, we identified candidate inhibitors of triple monoamine neurotransmitter reuptake and provided a theoretical background for identifying such neurotransmitter modifiers for developing novel therapeutic agents of various neuropsychiatric disorders.

Schizophrenia : Changing Concepts and the Development of Novel Antipsychotics

  • Remington, Gary
    • Korean Journal of Biological Psychiatry
    • /
    • v.3 no.1
    • /
    • pp.22-29
    • /
    • 1996
  • The introduction of chlorpromazine in the 1950's revolutionized the treatment of schizophrenia and ultimately led to the development of selective $D_2$ antagonists such as haloperidol, a goal in keeping with the prevalent theories at that time. However, limitations in the efficacy of these agents, a growing awareness of their side effects, and theoretical shifts in our understanding of schizophrenia have encouraged ongoing efforts to develop better 'atypical' antipsychotics. Clozapine, and subsequently risperidone, represent examples of these novel compounds, both of which incorporate shared serotonin-dopamine antagonism(SDA). The next years will be dominated by further development of SDA compounds, although a number of other lines of investigation are also being pursued.

  • PDF

Determination of Catecholamines and Their Metabolites in Rat Brain by High Performance Liquid Chromatography with Electrochemical Detector (HPLC-ECD에 의한 흰쥐 뇌 부위별 Catecholamine 및 대사산물의 신속정량법)

  • Ro, Ihl-Hyeob
    • YAKHAK HOEJI
    • /
    • v.32 no.1
    • /
    • pp.50-54
    • /
    • 1988
  • A simple and sensitive method was studied for the simultaneous determination of catecholamine, indoleamine and their related metabolites by high performance liquid chromatography with electrochemical detector. Norepinephrine, dopamine, serotonin and their metabolites of 3,4-dihydroxyphenylacetic acid, homovanillic acid, 5-indoleacetic acid were resolved from rat brain tissue homogenates by separation on reversed phase $C_{18}$ column with mobile phase consisting of monochloroacetate buffer (pH2.47), 1.42mM sodium octyl sulfonate and 7% acetonitrile. Both catechols and indoles can be eluted in 15min. The sensitivities of this method are sufficient for determination of at least 100 pg of neurochemical amines in brain samples, for example, frontal cortex, olfactory bulb, striatum, septum, hippocampus, thalamus, hypothalamus, medulla & pons and cerebellum. The highest level of dopamine was observed in striatum whereas norepinephrine and serotonin were in hypothalamus.

  • PDF

The Role of Ginseng Total Saponins in the Inhibition of the Development of Analgesic Tolerance to Morphine (몰핀 내성 형성 억제에 있어서 인삼 사포닌의 역할)

  • Kim, Hack-Seang;Oh, Ki-Wan;Seong, Yeon-Hee
    • Journal of Ginseng Research
    • /
    • v.15 no.3
    • /
    • pp.179-182
    • /
    • 1991
  • The relationship between the brain monoamines and morphine tolerance was examined in ginseng total saponins treated mice. Ginseng total saponins (100 mg/kg, i.p.) did not antagonize morphine (10 mg/kg, s.c.) analgesia in mice. Daily treatment with ginseng total saponins (100 mg/kg) did not affect the brain levels of noradrenaline, dopamine and serotonin for 5 days but inhibited the development of morphine tolerance. This inhibition of the development of morphine tolerance was not attributed to the reductions of brain noradrenaline, dopamine and serotonin in mice treated with ginseng total saponins (100 mg/kg) daily. This result suggest that a newly equilibrated state of neurologic function may involve an underlying mechanism in mice treated with ginseng total saponins.

  • PDF

Korean red ginseng water extract produces antidepressant-like effects through involving monoamines and brain-derived neurotrophic factor in rats

  • Tzu-wen Chou ;Huai-Syuan Huang;Suraphan Panyod ;Yun-Ju Huang ;Lee-Yan Sheen
    • Journal of Ginseng Research
    • /
    • v.47 no.4
    • /
    • pp.552-560
    • /
    • 2023
  • Background: Ginseng Radix (Panax ginseng Meyer, Araliaceae) has been used medicinally to treat the brain and nervous system problems worldwide. Recent studies have revealed physiological effects that could potentially benefit cognitive performance or mood. The present study aimed to investigate the antidepressant effects of Korean red ginseng water extract (KGE) and its active component in an unpredictable chronic mild stress (UCMS)-induced animal model and elucidate the underlying mechanisms. Methods: The antidepressant potential of the UCMS model was evaluated using the sucrose preference test and open field tests. The behavioral findings were further corroborated by the assessment of neurotransmitters and their metabolites from the prefrontal cortex and hippocampus of rats. Three doses of KGE (50, 100, and 200 mg/kg) were orally administered during the experiment. Furthermore, the mechanism underlying the antidepressant-like action of KGE was examined by measuring the levels of brain-derived neurotrophic factor (BDNF)/CREB, nuclear factor erythroid 2-related factor 2 (Nrf2), and Kelch-like ECH-associated protein 1 (Keap1) proteins in the prefrontal cortex of UCMS-exposed rats. Results: KGE treatment normalized UCMS-induced depression-related behaviors. Neurotransmitter studies conducted after completing behavioral experiments demonstrated that KGE caused a reduction in the ratio of serotonin and dopamine, indicating a decrease in serotonin and dopamine turnover. Moreover, the expression of BDNF, Nrf2, Keap1 and AKT were markedly increased by KGE in the prefrontal cortex of depressed rats. Conclusion: Our results provide evidence that KGE and its constituents exert antidepressant effects that mediate the dopaminergic and serotonergic systems and expression of BDNF protein in an animal model.