• 제목/요약/키워드: Dopamine Receptor D4

검색결과 72건 처리시간 0.03초

한국인 고혈압군에서 Dopamine D3 receptor 유전자에 존재하는 Bal I 제한절편길이 다형성에 관한 연구 (A Bal I RFLP of Dopamine D3 Receptor Gene in Korean Hypertensives)

  • 김선정;장대호;강병용;김현희;이강오
    • Environmental Analysis Health and Toxicology
    • /
    • 제18권4호
    • /
    • pp.243-247
    • /
    • 2003
  • 고혈압은 다양한 유전적 요인과 환경적 요인들이 상호작용하여 발병하는 질환으로, 기존의 연구에서 dopamine D3 receptor(DRD3)와 고혈압과의 관련성에 관한 보고들이 있었다. 이에, 본 연구에서는 DRD3 유전자에 존재하는 Bail제한절편길이 다형성이 한국인 집단에서 고혈압과 어떠한 관련성이 있는 지를 조사하였다. 환자-대조군 연구를 수행한 결과 이 유전자에 존재하는 다형성은 한국인 집단에서 고혈압과 유의한 관련성을 나타내지 않았다. 그러나, 이 다형성을 구성하는 대립 유전자의 빈도를 여러 민족집단의 결과들과 비교했을 때, 흑인 집단과 유의한 차이를 나타내었다. 따라서, 이러한 결과는 DRD3유전자에 존재하는 다형성이 고혈압과의 관련성을 나타내는 지를 정확하게 이해하기 위해서는 혹인 집단을 비롯한 다른 민족집단들을 대상으로 하여 광범위한 연구를 수행할 필요가 있을 것으로 생각된다.

Dopamine $D_1$ Receptor 효능제인 SKF 81297의 신장작용 (Renal Action of SKF 81297, Dopamine $D_1$ Receptor Agonist, in Dogs)

  • 고석태;정경희
    • Biomolecules & Therapeutics
    • /
    • 제9권3호
    • /
    • pp.209-217
    • /
    • 2001
  • This study was attempted to investigate on renal effect of ($\pm$)6-chloro-7,8-dihydroxy-1-phenol 2,3,4,5-tetrahydro-lH-3 benzazepine (SKF 81297), dopamine $D_1$ receptor agonist, in dog. SKF 81297, when gluten intravenously, produced diuretic action along with the increases of renal plasma flow (RPF), glomerular filtration rate (GFR), amounts of N $a^{+}$ and $K^{+}$ excreted into urine ( $E_{Na}$ , $E_{K}$) and osmolar clearance ( $C_{osm}$). It also decreased the reabsorption rates of N $a^{+}$ and $K^{+}$ in renal tubule ( $R_{Na}$ , $R_{K}$) and free water clearance ( $C_{H2O}$), whereas ratios of $K^{+}$ agonist N $a^{+}$ in urine and filtration fraction (FF) was not changed. SKF 81297, when administered into a renal artery, elicited diuresis both in experimental kidney given the SKF 81297 and control kidney not given, while the effect was more remarkable in experimental kidney than those exhibited in control kidney. SKF 81297 given into carotid artery also exhibited diuresis, the potency at this time, compared to those induced by intravenous SKF 81297, was magnusgreat. Above results suggest that SKF 81297 produces diuresis by both indirect action through changes of central function and direct action being induced in kidney. Central diuretic action is mediated by improvement of renal hemodynamics, but direct action by inhibition of electrolytes reabsorption in renal tubule.enal tubule. tubule.

  • PDF

Haloperidol 투여후 금단기간에 따른 백서 선조체의 [$^3H$]Spiperone 결합 및 Dopamine 대사물질의 변화 (Time-Course of [$^3H$]Spiperone Binding and Dopamine Metabolism in the Rat Striatum after Withdrawal from Haloperidol Ttreatment)

  • 이중용;공보금;김용관;정청;김선희;김영훈
    • 생물정신의학
    • /
    • 제3권1호
    • /
    • pp.51-56
    • /
    • 1996
  • The effects of 3 week treatment with haloperidol(2mg/kg/day, i.p.) on dopamine(DA) D2 receptor and DA metabolism in rat striata were studied at various time points after withdrawal from the drug treatment. Striatal DA D2 receptors were characterized with the radioligand 0.5nM [$^3H$]Spiperone. Dopamine(DA), homovanillic acid(HVA), 3,4-dihydroxyphenyl acetic acid(DOPAC) in rat striatum were measured with the high performance liquid chromatography. Drug withdrawal for 1 week induced significant increase in the number of D2 receptor in striatum after withdrawal for 1 week(p<0.05), and then this change was restored to control level during the withdrawal time of 2 and 4 weeks. There was no difference in striatal concentrations of DA and its metabolites among the groups. In conclusion, one-week withdrawal from chronic haloperidol treatment induced DA D2 receptor supersensitivity in the striatum, and that was normalized rapidly. Though this adaptive change in DA receptors, it may not affect the metabolism of DA in striatum.

  • PDF

Three-dimensional Pharmacophore Mapping of a Series of Isoxazolylpiperazine Inhibitors Selectively acting on the Dopamine D4 Receptor

  • Pae, Ae-Nim;Lee, In-Young;Koh, Hun-Yeong
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2002년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2
    • /
    • pp.183-185
    • /
    • 2002
  • The discovery of new ligands with affinity and selectivity for the dopamine $D_2$ receptor subtypes is an important area in medicinal chemistry. The distribution of the $D_2$ receptors in the limbic areas of brain suggests that these receptors may be particularly an attractive target for the design of potential selective antipsychotic drugs without causing extrapyramidal side effects. (omitted)

  • PDF

An in Vivo Study of Dopamine Metabolism in Hyperglycemic Rat Striatum

  • Lim, Dong-Koo;Lee, Kyung-Min
    • Archives of Pharmacal Research
    • /
    • 제18권4호
    • /
    • pp.249-255
    • /
    • 1995
  • The changes in the levels of the extracellular dopamine metabolites and the responses to various dopamine agents were studied by using microdialysis inhyperglycemic rat striatum. The hyperglycemia were induced by the administriation of streptozotocin (40 mg/kg, i.p. for 3 days.). The basal levels of striatal dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) were significantly decreased in hyperglycemic rat striatum. After the administration ofl D-1 and D-2 receptor antagonists, SCH-23390 and (-)sulpiride, to rats 14 days after the last administration of STZ, the increased rates in DOPAC levels were higher in hyper- than in normoglycemic rats. However, after the administration of dopamine autoeceptor agonist, 3(-)PPP, the levels of the extracellular HVA were increased in normoglycemic rats, but those were not altered in hyperglycemic rats. The results indicate that the striatal dopamine activities were decreased in the hyperglycemic rats and suggest that release of dopamine may be decreased in hyperglycemic rats. Furthermore it suggest that the increase in the levels of the extracellular dopamine metabolites by dopamine antagonists might be dur to the incrrased sensitivities of the dopamine receptors in hyperglycemic state.

  • PDF

(${\pm}$)-cis-8-Amino-2,3,4,4a,5,10b-hexahydrothiazolo[4,5-f]indeno [1,2-b][1,4]oxazine의 합성 (Synthesis of (${\pm}$)-cis-8-amino-l-2,3,4,4a,5,10b-hexahydrothiazolo[4,5-f]indeno [1,2-b][1,4]oxazine)

  • 마은숙
    • 약학회지
    • /
    • 제52권6호
    • /
    • pp.488-493
    • /
    • 2008
  • 2-Aminothiazole ring as a bioisoster of catechol in dopamine has provided with good oral availability and lipophilic property. 2-Aminoindan, is a rigid form of dopamine, was evaluated as a dopamine D3 agonist with low neurotoxicity. Dopamine D3 agonist was evaluated as selective for the treatment of Parkinson's disease. In order to develop a novel dopamine D3 agonist, we tried to synthesize the aminothiazoloindenoxazine derivative that is a hybrid structure of aminoindenoxazine and thiazole ring. cis-2-Amino-1-indanol (2) was synthesized from 1,2-indandione-2-oxime by catalytic hydrogenation and it was treated with chloroacetyl chloride and NaH in benzene solution to give (${\pm}$)-cis-4,4a,5,9b-tetrahydroindeno[1,2-b][1,4]oxazin-3(2H)-one (6). Nitration of 6 by the mixed acid gave 8-nitro compound (7) and the carbonyl group of 7 was reduced with $LiAlH_4$ to afford compound (8). 8 was reduced to form (${\pm}$)-cis-8-amino-2,3,4,4a,5,9b-hexahydroindeno[1,2-b][1,4]oxazine (9) and finally it was cyclized with KSCN in glacial acetic acid to yield (${\pm}$)-cis-8-amino-2,3,4,4a,5,10b-hexahydrothiazolo[4,5-f]indeno[1,2-b][1,4]oxazine (10).

정신분열증, 알코올중독, 약물중독에서 도파민 $D_2$ 수용체 유전자의 조절유전자(modifying gene)로서의 역할 - 충동적.강박적.탐닉적 행동을 나타내는 정신질환들에서 도파민 $D_2$ 수용체의 조절유전자로서의 역할 - (The Dopamine $D_2$ Receptor Locus as a Modifying Gene in Korean Schizophrenia, Alcoholism and Drug Addiction)

  • 정현모;이홍석;장동원;이민수
    • 생물정신의학
    • /
    • 제4권2호
    • /
    • pp.225-233
    • /
    • 1997
  • The authors attempted to examine the allelic association between the A1 allele of Dopamine $D_2$ receptor and schizophrenia, alcoholism, drug addiction in Koreans. Schizophrenic patients(n=31), alcoholism(n=65), drug addiction(n=18) and controls(n=52) were examined by case-control study for distribution of the TaqI polymorphism of the dopamine $D_2$ receptor gene in Korean population to minimize the effect of racial differencies in gene frequencies. In schizophrenics, the numbers of schizophrenics with A1A1, A1A2, A2A2 were 9(29.0%), 15(48.4%) and 7(22.6%) respectively and in alcoholics with A1A1, A1A2, A2A2 were 14(21.5%), 36(55.4%) and 15(23.1%) respectively and in drug addiction with A1A1, A1A2, A2A2 were 2(11.1%), 10(55.6%) and 6(33.3%) respectively and in controls with A1A1, A1A2, A2A2 were 4(7.6%), 24(46.2%) and 24(46.2%) respectively. The prevalence of the A1 allele in schizophrenics, alcoholics, drug addiction and controls were 77%, 76.9%, 67% and 53.8% respectively. And the frequency of the A1 allele in schizophrenics, alcoholics, drug addiction and controls were 0.53, 0.49 0.39 and 0.31 respectively. There was significant difference in the frequency of the A1 allele between schizophrenics, alcoholics and controls. We also classified our alcoholic population. For classification by severity, we used the median MAST score 30 in our samples. There was also significant difference in the frequency of the A1 allele between less severe group(0.42) and more severe group(0.57). This data suggest that the A1 allele is associated with schizophrenia and alcoholism in Koreans. Furthermore the prevalence of the A1 allele increassed in more severely affected alcoholics. The authors conclude that our data support an allelic association between the A1 allele at dopamine $D_2$ receptor and schizophrenia, alcoholism. These results suggest the A1 allele of the $DRD_2$ gene is associated with a number of behavior disorders in which it may act as a modifying gene rather than as the primary etiological agent.

  • PDF

Design, Synthesis, and Functional Evaluation of 1, 5-Disubstituted Tetrazoles as Monoamine Neurotransmitter Reuptake Inhibitors

  • Paudel, Suresh;Wang, Shuji;Kim, Eunae;Kundu, Dooti;Min, Xiao;Shin, Chan Young;Kim, Kyeong-Man
    • Biomolecules & Therapeutics
    • /
    • 제30권2호
    • /
    • pp.191-202
    • /
    • 2022
  • Tetrazoles were designed and synthesized as potential inhibitors of triple monoamine neurotransmitters (dopamine, norepinephrine, serotonin) reuptake based on the functional and docking simulation of compound 6 which were performed in a previous study. The compound structure consisted of a tetrazole-linker (n)-piperidine/piperazine-spacer (m)-phenyl ring, with tetrazole attached to two phenyl rings (R1 and R2). Altering the carbon number in the linker (n) from 3 to 4 and in the spacer (m) from 0 to 1 increased the potency of serotonin reuptake inhibition. Depending on the nature of piperidine/piperazine, the substituents at R1 and R2 exerted various effects in determining their inhibitory effects on monoamine reuptake. Docking study showed that the selectivity of tetrazole for different transporters was determined based on multiple interactions with various residues on transporters, including hydrophobic residues on transmembrane domains 1, 3, 6, and 8. Co-expression of dopamine transporter, which lowers dopamine concentration in the biophase by uptaking dopamine into the cells, inhibited the dopamine-induced endoctytosis of dopamine D2 receptor. When tested for compound 40 and 56, compound 40 which has more potent inhibitory activity on dopamine reuptake more strongly disinhibited the inhibitory activity of dopamine transporter on the endocytosis of dopamine D2 receptor. Overall, we identified candidate inhibitors of triple monoamine neurotransmitter reuptake and provided a theoretical background for identifying such neurotransmitter modifiers for developing novel therapeutic agents of various neuropsychiatric disorders.