• 제목/요약/키워드: Dopamine $D_2/D_3$ receptor

검색결과 80건 처리시간 0.025초

Dopamine Dl Recptor 효능제인 SKF 81297의 이뇨작용에 대한 신장 신경 제거 및 Dopamine Dl Receptor차단제인 SCH 23390의 영향 (Effects of Renal Denervation and SCH 23390, Dopamine Dl Receptor Antagonist, on Diuretic Action of SKF 81297, Dopamine Dl Receptor Agonist, in Dog)

  • 고석태;정경희;임동윤
    • Biomolecules & Therapeutics
    • /
    • 제10권1호
    • /
    • pp.50-58
    • /
    • 2002
  • lt had been reproted previously that (${\pm}$)6-chloro-7,8-dihydroxy-1-phenyl 2,3,4,5-tetra-hydro -lH-3benzazepine (SKF 81297), dopamine $D_1$ receptor agonist, produced diuresis by both Indirect action through central function and direct action being induced in kidney. This study was attempted in order to examine the diuresis mechanism of such SKF 81297 Diuretic action of SKF 81297 given into the vein or the carotid artery was not affected by renal denervation, whereas diuretic action of SKF 81297 administered into a renal artery was blocked completely by renal denervation, and then diuretic action of SKF 81297 injected into carotid artery was inhibited by SCH 23390, dopamine $D_1$ receptor antagonist, given into carotid artery. Above results suggest that indirect diuretic action of SKF 81297 elicites through central dopamine $D_1$ receptor and direct diuresis in kidney by influence of renal nerves.

파킨슨병 모형 흰쥐의 줄무늬체에서 Apomorphine 투여 방법에 따른 도파민 D2 수용체의 발현 (Expression of Dopamine D2 Receptor in Response to Apomorphine Treatment in the Striatum of the Rat with Experimentally Induced Parkinsonism)

  • 최승진;성재훈;손병철;박춘근;권성오;김문찬;이상원
    • Journal of Korean Neurosurgical Society
    • /
    • 제29권7호
    • /
    • pp.868-876
    • /
    • 2000
  • Objective : Parkinsonian rat models have generally been characterized by unilateral destruction of both the nigrostriatal pathway and the mesolimbic pathway using the neurotoxin 6-hydroxydopamine. The induction of contraversive turning by apomorphine in these models is thought to reflect the stimulation of supersensitive dopamine D2 receptor or receptor-mediated mechanisms in denervated neostriatum. The present study was undertaken to investigate the expression of dopamine D2 receptor in denervated striatum according to modalities of apomorphine(dopamine agonist) treatment after creating a hemiparkinsonian rat model in which there is 6-hydroxydopamine induced destruction of the unilateral dopaminergic nigrostriatal pathway. Methods : After making complete lesion in left side substantia nigra pars compacta(SNpc) by stereotactic injection of 6-hydroxydopamine into medial and lateral areas of SNpc, and confirming successful animal model by apomorphine induced contraversive turning behavior without recovery and complete destruction of ipsilateral SNpc with tyrosine hydroxylase immunostaining in 7th day after operation, 15 rats of parkinsonian model were studied with or without administration of apomorphine at varying doses and durations. According to the modalities of apomorphine treatment for 4 days, these rats were divided into 3 groups, as not-treated group, intermittently treated group and constantly treated group. For investigating the extent of the expression of dopamine D2 receptor in denervated striatum, immunohistochemical staining by dopamine D2 receptor antibody and Western blot were performed. Results : In the D2 receptor antibody immunohistochemical staining, the mean number of positive stained neurons was highest in not-treated group($20.5{\pm}1.14$) of 3 groups. In constantly treated group, the mean number of positive stained neurons was less($3.9{\pm}1.79$) than intermittently treated group(p<0.05). The Western blotting with the D2 receptor antibody revealed that expression of receptors was also highest in not-treated group and less in constantiy treated group than intermittently treated group. Conclusion : Dopamine D2 receptors in denervated striatum of parkinsonian rat models, which were not treated with apomorphine, revealed to be most highly expressed. And, according to doses and durations of apomorphine administration, desensitization of the receptor was more apt to develop with constant treatment than intermittent treatment. In clinical setting, the authors believe that, in long-term treated parkinsonian patients, desensitization of dopamine receptors due to chronic dopaminergic stimulation seems to be partially related to mechanisms of drug tolerance.

  • PDF

Roles of Dopamine D2 Receptor Subregions in Interactions with β-Arrestin2

  • Zhang, Xiaohan;Choi, Bo-Gil;Kim, Kyeong-Man
    • Biomolecules & Therapeutics
    • /
    • 제24권5호
    • /
    • pp.517-522
    • /
    • 2016
  • ${\beta}$-Arrestins are one of the protein families that interact with G protein-coupled receptors (GPCRs). The roles of ${\beta}$-arrestins are multifaceted, as they mediate different processes including receptor desensitization, endocytosis, and G protein-independent signaling. Thus, determining the GPCR regions involved in the interactions with ${\beta}$-arrestins would be a preliminary step in understanding the molecular mechanisms involved in the selective direction of each function. In the current study, we determined the roles of the N-terminus, intracellular loops, and C-terminal tail of a representative GPCR in the interaction with ${\beta}$-arrestin2. For this, we employed dopamine $D_2$ and $D_3$ receptors ($D_2R$ and $D_3R$, respectively), since they display distinct agonist-induced interactions with ${\beta}$-arrestins. Our results showed that the second and third intracellular loops of $D_2R$ are involved in the agonist-induced translocation of ${\beta}$-arrestins toward plasma membranes. In contrast, the N- and C-termini of $D_2R$ exerted negative effects on the basal interaction with ${\beta}$-arrestins.

Localization and Developmental Changes of Dopamine $D_1$ and $D_2$ Receptor mRNAs in the Rat Brain

  • 김명옥;최완성;이봉희;조경재;서숙재;강성구;김경진;백상호
    • Animal cells and systems
    • /
    • 제1권3호
    • /
    • pp.497-505
    • /
    • 1997
  • Dopamine plays diverse roles in the fetal brain development and differentiation. However, the development of the dopaminergic neurons and its receptors has not been fully understood. In our studies, in situ hybridization and immunohistochemical methods were used to investigate the ontogeny of dopaminergic neurons and its receptor subtypes during the fetal development of the rat. In situ hybridization data showed that dopamine $D_1$ and $D_2$ receptor mRNAs were expressed in the ventricular and subventricular zones of ganglionic eminence, thalamus, hypothalamus, and cortical neuroepithelium on gestational day 13. Expression of dopamine $D_1$ and $D_2$ receptors during gestational days 17 and 19 reached the same or similar level of that in the adult brain. Expression of $D_1$ receptor mRNA preceded that of $D_2$ receptor mRNA in the early developmental stage, although this pattern was reversed with the sharp increase of $D_2$ receptor mRNA soon after. $D_2$ receptor mRNA was expressed in substantia nigra of mesencephalon of the fetal rat brain. However, $D_1$ receptor mRNA was not detected in substantia nigra. Our results indicate that dopamine might function in the fetal brain during the early gestational period.

  • PDF

Studies of the agonist-induced receptor sequestration of dopamine D2 receptor

  • Kim, So-Young;Kim, Kyeong-Jin;Kim, Kyeong-Man
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2-2
    • /
    • pp.77.2-77.2
    • /
    • 2003
  • The dopamine D2 receptor (D$_2$R) is target for antipsychotic drugs and associated with several neuropsychiatric disorders. The internalization (sequestration) of G protin-coupled receptor is caused by agonist-induced receptor phosphorylation mediated by GRK, followed by the interaction with ${\beta}$-arrestin. In this study, we examined the agonist-dependent sequestration/internalization of dopamine D$_2$R, which were transiently expressed in HEK 293 cells with of without GRK co-expression. Co-expression of GRK2 or GRK3 markedly enhanced the sequestration of D$_2$R. (omitted)

  • PDF

Role of Dopamine Receptors on Electroencephalographic Changes Produced by Repetitive Apomorphine Treatments in Rats

  • Jang, Hwan-Soo;Kim, Ji-Young;Kim, Sang-Heon;Lee, Maan-Gee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제13권3호
    • /
    • pp.147-151
    • /
    • 2009
  • Repeated psychostimulants induce electroencephalographic (EEG) changes, which reflect adaptation of the neural substrate related to dopaminergic pathways. To study the role of dopamine receptors in EEG changes, we examined the effect of apomorphine, the dopamine D1 receptor antagonist, SCH-23390, and the D2 receptor antagonist, haloperidol, on EEG in rats. For single and repeated apomorphine treatment groups, the rats received saline or apomorphine for 4 days followed by a 3-day withdrawal period and then apomorphine (2.5 mg/kg, i.p.) challenge after pretreatment with saline, SCH-23390, or haloperidol on the day of the experiment. EEGs from the frontal and parietal cortices were recorded. On the frontal cortex, apomorphine decreased the power of all the frequency bands in the single treatment group, and increased the theta (4.5 ${\sim}$ 8 Hz) and alpha (8 ${\sim}$ 13 Hz) powers in the repeated treatment group. Changes in both groups were reversed to the control values by SCH-23390. On the parietal cortex, single apomorphine treatment decreased the power of some frequency bands, which were reversed by haloperidol but not by SCH-23390. Repeated apomorphine treatment did not produce significant changes in the power profile. These results show that adaptation of dopamine pathways by repeated apomorphine treatment could be identified with EEG changes such as increases in theta and alpha power of the frontal cortex, and this adaptation may occur through changes in the D1 receptor and/or the D2 receptor.

한국인 정신분열증 환자와 도파민 $D_3$ 수용체 유전자의 연합 (Lack of Association Between the Dopamine $D_3$ Receptor Gene and Korean Schizophrenic Patients)

  • 한문균;이민수;이대희
    • 생물정신의학
    • /
    • 제2권2호
    • /
    • pp.237-247
    • /
    • 1995
  • 도파민 $D_3$ 수용체 유전자와 정신분열증 병인과의 연관성을 밝히고자 본 연구에서는 한국에서의 정신분열증환자 66명과 정상대조군 76명에서 다형성의 분포를 PCR을 이용하여 환자대조연구 방법으로 조사하였다. 정신분열증환자에서 대립유전자 1의 빈도는 0.66이었고, 정상 대조군에서는 0.76이었다. 즉, 두군간에 대립유전자 1의 빈도에는 유의한 차이가 없었고, 양성 및 음성 증상군 척도평가에 의한 정신분열증의 양성아형과 음성아형간에도 유의한 차이가 없었다. 정신분열증 환지에서는 전체 66명중 동형 접합체가 43명으로 65.1%. 이형 접합체는 23명으로 34.9%였다. 정상 대조군에서는 전체 76명중 동형접합체가 54명으로 71.1%. 이형접합체는 28.9%였다. 이러한 결과는 이전의 정신분열증과 도파민 $D_3$ 수용체 유전자간의 연관관계를 연구한 외국의 연구결과와 일치하며 도파민 $D_3$ 수용체 유전자가 정신분열증 병인의 원인일 것이라는 가설을 뒷받침하지는 못하였다.

  • PDF

랫드에서 TSH와 갑상선 호르몬에 미치는 dopamine계의 영향 (Effects of the dopaminergic system on release of TSH and thyroid hormone in rats)

  • 이상우;김진상;한정희
    • 대한수의학회지
    • /
    • 제32권2호
    • /
    • pp.165-173
    • /
    • 1992
  • The present study was carried out to investigate the effects of dopaminergic drugs and the role of specific dopamine(DA) receptors on the release of TSH, $T_4$ and $T_3$. Serum TSH levels (cold-induced, $4{^{\circ}C}$) were determined using RIA(radioimmunoassay) at 30 min after administration of dopamine agonists and antagonists. Serum $T_4$ and $T_3$ levels were detected after these dopaminergic drugs were administered subcutaneously twice a day for a week. The results of the study are summarized as follows : Apomorphine, a nonspecific DA receptor agonist, produced a dose-depedent decrease in serum TSH, $T_4$ and $T_3$ levels. However, only low doses (0.3, 1.0mg/kg) of SKF38393, a specific $D_1$-receptor agonist, produced a decrease in serum lelvels of TSH. I,Y171555, a specific $D_2$-receptor agonist, produced a dose dependent decrease in serum TSH, $T_4$ and $T_3$ levels. However, SCH23390, a specific $D_1$-receptor antagonist, produced a decrease except in serum T levels which were increased dose dependently. High doses (1.0, 3.0mg/kg) of sulpiride, a specific $D_2$-receptor antagonist, made a increase in the serum levels of TSH and $T_3$. The effects of dopaminergic drugs in serum TSH and $T_4$ levels was potentiated by the pretreatment of apomorphine. The overall results of this study suggest that the regulation of TSH, $T_4$ and $T_3$ secretion were mediated via specific $D_1$ and $D_2$ receptor.

  • PDF

주의력결핍 과잉행동장애에서 도파민 전달체 및 도파민 D2, D3, D4 수용체 유전자 다형성 (Dopamine Transporter Gene and Dopamine D2, D3, D4 Receptor Gene Polymorphisms in Attention Deficit Hyperactivity Disorder)

  • 박상필;김대광;정철호
    • Journal of the Korean Academy of Child and Adolescent Psychiatry
    • /
    • 제19권1호
    • /
    • pp.19-27
    • /
    • 2008
  • Objectives : The aim of this study was to examine the association of attention-deficit hyperactivity disorder (ADHD) in Korean populations with functional polymorphisms of six genes dopamine receptors (Ser311/Cys311 polymorphism, Taq1 A polymorphism, and Taq1 B polymorphism in DRD2, BalI polymorphism in DRD3, and promoter -521 C/T polymorphism and exon III 48 bp repeat polymorphism in DRD4) and one gene in dopamine transporter (DAT1). Methods : Participants were 58 children with ADHD and 110 control children. The genotypes were determined by PCR. Results : There was a statistically significant difference in genotype frequency of -521 C/T polymorphism within the promoter region of the DRD4 between two groups. Furthermore, in the male group, both genotype and allele frequencies showed statistically significant differences. Conclusion : Findings of the study indicate that -521 C/T polymorphism in promoter region of DRD4 appears to be a possible candidate gene for ADHD in Korean population.

  • PDF

Haloperidol 투여후 금단기간에 따른 백서 선조체의 [$^3H$]Spiperone 결합 및 Dopamine 대사물질의 변화 (Time-Course of [$^3H$]Spiperone Binding and Dopamine Metabolism in the Rat Striatum after Withdrawal from Haloperidol Ttreatment)

  • 이중용;공보금;김용관;정청;김선희;김영훈
    • 생물정신의학
    • /
    • 제3권1호
    • /
    • pp.51-56
    • /
    • 1996
  • The effects of 3 week treatment with haloperidol(2mg/kg/day, i.p.) on dopamine(DA) D2 receptor and DA metabolism in rat striata were studied at various time points after withdrawal from the drug treatment. Striatal DA D2 receptors were characterized with the radioligand 0.5nM [$^3H$]Spiperone. Dopamine(DA), homovanillic acid(HVA), 3,4-dihydroxyphenyl acetic acid(DOPAC) in rat striatum were measured with the high performance liquid chromatography. Drug withdrawal for 1 week induced significant increase in the number of D2 receptor in striatum after withdrawal for 1 week(p<0.05), and then this change was restored to control level during the withdrawal time of 2 and 4 weeks. There was no difference in striatal concentrations of DA and its metabolites among the groups. In conclusion, one-week withdrawal from chronic haloperidol treatment induced DA D2 receptor supersensitivity in the striatum, and that was normalized rapidly. Though this adaptive change in DA receptors, it may not affect the metabolism of DA in striatum.

  • PDF