• Title/Summary/Keyword: Dongchimi

Search Result 118, Processing Time 0.028 seconds

Studies on the Optimum Fermenting Conditions of Dongchimi for Production of Ion Beverage (이온음료 제조를 위한 동치미의 최적 담금 조건에 관한 연구)

  • Ko, Eun-Jung;Hur, Sang-Sun;Park, Man;Choi, Yong-Hee
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.24 no.1
    • /
    • pp.141-146
    • /
    • 1995
  • The study was conducted for optimum fermenting conditions of Dongchimi(pony tailed chinese radish kimchi) in production of ion beverage. The changes of pH and total acidity were increased as the temperature increased. Non-volatile organic acids, such as lactic acid, citric acid, malic acid and succinic acid were produced in Dongchimi fermentation. The amount of lactic acid was increased higher, followed by citric acid and malic acid. However succininc acid was produced a little of amount at $0^{\circ}C$. Lactic acid producing bacteria number increased in initial period and then decreased in last period of fermentation. During lactic acid producing bacteria was increased, the amouont of lactic acid was increased. The flavor components were tentatively identified as methyl pentane, ethyl thioethene 2, 3-diazaindolizine, dimethyl disulfide. The optimum fermenting conditions of Dongchimi for production of ion beverage were 24~29 days at $0^{\circ}C$, 9~12dyas at $5^{\circ}C$ and 16~22days at $10^{\circ}C$, respectively.

  • PDF

Antioxidant and Antibacterial Activity of Extracts from Brassica juncea czerniak et coss., Celosia cristata L., and Beta vulgaris L. (맨드라미, 비트, 홍갓 색소 추출물의 항산화 및 항균 효과)

  • Kim, Mi-Hye
    • Journal of the Korean Society of Food Culture
    • /
    • v.27 no.6
    • /
    • pp.719-729
    • /
    • 2012
  • We sought to study the qualities and scientific benefits of Dongchimi, a traditional Korean food. We compared and analyzed ingredients used for the appearance and storability of dongchimi - honggot (Brassica juncea czerniak et coss), cockscomb (Celosia cristata L.), and beet Beta vulgaris L.). We specifically examined the antioxidative and antibacterial activity of pigments from extracts of these ingredients. Distilled water ($H_2O$) and 1% citric acid were used to safely extract pigments. The antioxidative activity of the pigments was then measured for total phenolic compounds, SOD (Super Oxide Dismutase), and EDA (Electron Donation Ability) by DPPH. The antibacterial activity of was also assessed by a Paper disc solution. Our results show that the pigments had sufficient antioxidative activity and had antibacterial properties against Gram positive and negative bacteria. In particular, Cockscomb (used for enhancing color) contained the highest amount of polyphenol compounds and had the most efficient antioxidative activity.

Effect of Bacteriophages on Viability and Growth of Co-cultivated Weissella and Leuconostoc in Kimchi Fermentation

  • Kong, Se-Jin;Park, Jong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.4
    • /
    • pp.558-561
    • /
    • 2019
  • This study aimed to understand the survival and growth patterns of bacteriophage-sensitive Weissella and Leuconostoc strains involved in kimchi fermentation. Dongchimi kimchi was prepared, and Weissella and Leuconostoc were co-cultivated in the dongchimi broth. Weissella cibaria KCTC 3807 growth was accompanied by rapid lysis with an increase in the bacteriophage quantity. Leuconostoc citreum KCCM 12030 followed the same pattern. The bacteriophage-insensitive strains W. cibaria KCTC 3499 and Leuconostoc mesenteroides KCCM 11325 survived longer under low pH as their growth was not accompanied by bacteriophages. The bacteriophage lysate of W. cibaria KCTC 3807 accelerated and promoted the growth of Leuconostoc. Overall, our results show that bacteriophages might affect the viability and population dynamics of lactic acid bacteria during kimchi fermentation.

Studies on the Enhanced Physiological Activities of Mixed Lactic Acid Bacteria Isolated from Fermented Watery Kimchi, Dongchimi (발효된 물김치인 동치미에서 분리한 혼합 젖산균의 생리활성 증진에 대한 연구)

  • Choi, Moon-Seop;Kim, Dong-Min;Oh, Kye-Heon
    • KSBB Journal
    • /
    • v.30 no.5
    • /
    • pp.245-252
    • /
    • 2015
  • The aim of this study was to investigate the efficacy of enhanced physiological activities in cultures isolated from Korean fermented watery Kimchi, Dongchimi, of single lactic acid bacteria (LAB), and when these three are mixed LAB as probiotics. Using the BIOLOG system and 16S rRNA sequencing, the isolates were characterized, and identified and assigned to Leuconostoc mesenteroides DK-3, Leuconostoc dextranicum DK-6, and Lactobacillus curvatus DK-13, respectively. Growth rate and pH changes, production of organic acids as metabolites, and physiological activities of the single and mixed LAB cultures, were monitored and compared. In mixed LAB cultures after 72 h of incubation, the maximum concentrations of lactic acid and acetic acid were approximately 340.5 mM and 191.9 mM, respectively, and pH changed from 7.00 to 3.62. Mixed LAB cultures were able to eliminate 96.3% of nitrite. Activities of antioxidant and ${\beta}$-galactosidase were 60.3% and 16.8 units/mg, respectively. Significant antibacterial activity of the concentrated supernatants was demonstrated against several food-poisoning bacteria. Physiological activities obtained from the mixed LAB cultures have been shown to be considerably higher than those of single LAB cultures. In conclusion, these studies demonstrate that compared to the single cultures, all physiological activities in mixed LAB cultures are significantly enhanced.

Isolation and Characterization of Lactic Acid Bacteria Producing Antimutagenic Substance from Korean Dongchimi (동치미로부터 항돌연변이 물질을 생산하는 유산균의 분리 및 특성)

  • 주길재;이창호;우철주
    • Journal of Life Science
    • /
    • v.11 no.5
    • /
    • pp.432-438
    • /
    • 2001
  • Various lactic acid bacteria were isolated from Korean Dongchimi (whole radish Kimichi with added water) in order to study their antimutagenic activity. Ames test using Salmonella enterica serovar typhimurium TA98 and TA100 showed the strain DLAB19 to have the highest antimutagenic activity among the 300 isolated strains against MNNG(N-methyl-N-nitro-N-nitrosoguanidine), NPD (4-nitro-O-phenylenediamine), 4-NQO(4-nitroquinoline-1-oxide) and AFB$_{1}$(aflatoxin B$_{1}$). The strain was identified as Leuconostoc mesenteroides subsp. cremoris according to the Bergeys Mannual Systematic Bscteriology based on its morphological, cultural, physiological characteristics and biological system Antimutagenic activity of Leu. mesenteroides subsp. cremoris DLAB19 was found in the culture supernatant suggesting the bacterium secretes, the antimutagenic substance in the media. The antimutagenic activity of Leu. mesenteroides subsp. cremoris DLAB19 was reconfirmed by the spore-rec assay using spores of Bacillus subtilis H17 (Rec$^{+}$) and M45 (Rec$^{[-10]}$ ).).

  • PDF

Changes in Physical Properties of Dongchimi during Fermentation (동치미의 발효 중 물리적 성질의 변화)

  • Kang, Kun-Og;Ku, Kyung-Hyung;Lee, Jung-Kun;Kim, Woo-Jung
    • Korean Journal of Food Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.262-266
    • /
    • 1991
  • The physicochemical properties of dongchimi, a Korean fermented Chinese radish, were investigated for their changes during fermentation in 7% NaCl brining solution at $4{\sim}35^{\circ}C$, The results showed that the relative viscosity of brining solution were initially decreased before steady increase there after. The Hunter L value increased and a value decreased and the turbidity also showed a similar increase as L value as affected more significantly by high fermentation temperature. The hardness of Chinese radish decreased initially followed by a little increase and then slowly decreased at later stage of fermentation. A linear relationship was found with decrease in salt concentration in brining solution and logarithmic value of brining time and activation energy was calculated for temperature range of $4{\sim}35^{\circ}C$ from the relationship.

  • PDF

Optimal Temperature and Salt Concentration for Low Salt Dongchimi Juice Preparation (저염 동치미 쥬스의 제조를 위한 최적 발효온도 및 소금농도)

  • 엄대현;장학길;김종군;김우정
    • Korean journal of food and cookery science
    • /
    • v.13 no.5
    • /
    • pp.578-584
    • /
    • 1997
  • Fermentation temperature and salt concentration of Dongchimi were studied for the development of low salt Dongchimi juice. The juice was prepared by soaking the radish in brine solution of 0.3∼3.0% and fermented at the temperature range of 10∼30$^{\circ}C$. The fermentation proceeded faster at higher temperature. However, the salt concentration effect was dependent on the temperature. Fermentation in 3.0% NaCl solution resulted the fastest reach to pH 3.8 followed by 0.5% NaCl at 10 and 20$^{\circ}C$, while higher NaCl concentration caused a decrease in the fermentation rate at 30$^{\circ}C$. Comparison of flavor of the juice of pH 3.9 showed that fresh sourness was high in the juice prepared at 20$^{\circ}C$ and in 0.5% NaCl. The preference test also showed the juice of pH 3.8∼4.0 fermented in 0.5% NaCl at 20$^{\circ}C$ to be the most preferable one. The salt concentration lower than 0.5% at 20$^{\circ}C$ resulted in faster fermentation and high values in turbidity. However 0.5% NaCl was scored high in flavor acceptability.

  • PDF

Physicochemical and Sensory Characteristics of Dongchimi Prepared with Turnip of Chinese, European and Korean Origin (한국.중국.유럽산 순무로 담근 동치미의 이화학적.관능적 특성 비교)

  • 오상희;김미리
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.13 no.2
    • /
    • pp.111-121
    • /
    • 2003
  • Physicochemical and sensory characteristics of turnip Donchimi prepared with Chinese(DC), Korean(DK) and European origin(DE) were analyzed during fermentation at $0^{\circ}C$. Salt concentrations of Dongchimi liquid were around 1.3% during fermentation. The pH, the total acidity, Lactobacilli number and turbidity were observed during fermentation of Dongchmi. DC was fermented the most rapidly among three based on the acidity, turbidity and lactic acid bacteria number. DC maintained higher hardness in textural properties during fermentation compared to DE, although it was evaluated lower scores of appearance in sensory test, and less Hunter color a value and anthocyanin content, compared to DK or DE. DK showed the highest in anthocyanin content, Hunter color a value, and hardness. Sensory evaluation showed that the scores of color, hardness, and overall preference of Donchimi were high in the order of DK>DC>DE. Score of overall preference of turnip Dongchimi was the highest with 6.7(10 cm line scale) in DK at the 40th day of fermentation, the optimum ripening time, but the lowest with 3.5 in DE.

  • PDF

Selection of Mixing Ratio for Preparation of Mixed Vegetable Juice (과채쥬스 제조를 위한 혼합조건의 선정)

  • 이규희;고영수;최희숙;김우정
    • Korean journal of food and cookery science
    • /
    • v.11 no.2
    • /
    • pp.113-118
    • /
    • 1995
  • A preferable mixing ratio of a six-vegetable juice was suggested in this study. The vegetables used for preparation of mixed vegetable juice were carrot(Ct), cabbage(Cg), pear(Pr), cucumber(Cr), celery (Cy) and dongchimi(Di). The characteristics of pH, titratible acidity, reducing sugar, turbidity, solids, color and acceptability were compared to determine the mixing ratio. The vegetables showed a wide ranHe of pH of 3.70-6.01, acidity of 28.92 uv~74.40 nd and reducing sugar of 1.20ft~ 12.69fo. Celery juice showed the higest suspension stability and "b" value and the lowest values in Hunter "L" and "a" values among the 6 vegetable juice. The preferable mixing ratio of two-vegetable juice selected were Ct-Di(1 : 4), Cg-Pr(1 : 3) and Cr-Cy(3 : 1). From the various ratio of the three of biary mixtures of Cg-Pr(1 : 3): Ct-Di(1 : 4): Cr-Sy(3 : 1), two ratio of 5.0 : 2.5 2.5(V-6A) and 6.0 : 2.0 : 2.0(V-6B) were suggested as the most prefered six-vegetable juice. Pear, dongchimi and cucumber were found to be influential on the preference. The pH and titratible acidity of the two juices with different ratios were in the range of 4.92~4.98 and 36.g∼37.4 ml, respectively.

  • PDF