• Title/Summary/Keyword: Domestic city gas

Search Result 48, Processing Time 0.024 seconds

A filed operation characteristics and the controversial point of Photovoltaic power generation system (태양광 발전시스템의 현장 운전특성 및 문제점)

  • Koh, Kang-Hoon;Suh, Ki-Young;Lee, Hyun-Woo;Hong, Doo-Sung;Gang, Yeong-Cheol;U, Jung-In
    • Proceedings of the KIEE Conference
    • /
    • 2000.11b
    • /
    • pp.381-383
    • /
    • 2000
  • The photovoltaic power generation system has a great future as clean energy instead of fossil fuel which has many environmental problems such as exhausted gas or air pollution. In a utility interactive photovoltaic generation system, a three-phase inverter is used for the connection between the photovoltaic array and the utility. This paper presents a three phase inverter for photovoltaic power system with current controller, voltage controller, PLL control system and the phase detector of interactive voltage by using da transformation. The proposed inverter system provides a sinusoidal ac current for domestic loads and the utility line with unity power factor. The results of the operated from January to October show the system characteristics.

  • PDF

Effect of Carbon dioxide in Fuel on the Performance of PEM Fuel Cell (연료중의 이산화탄소 불순물에 의한 연료전지 성능변화 연구)

  • Seo, Jung-Geun;Kwon, Jung-Taek;Kim, Jun-Bom
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.184-187
    • /
    • 2007
  • Hydrogen could be produced from any substance containing hydrogen atoms, such as water, hydrocarbon (HC) fuels, acids or bases. Hydrocarbon fuels couold be converted to hydrogen-rich gas through reforming process for hydrogen production. Even though fuel cell have high efficiency with pure hydrogen from gas tank, it is more beneficial to generate hydrogen from city gas (mainly methane) in residential application such as domestic or office environments. Thus hydrogen is generated by reforming process using hydrocarbon. Unfortunately, the reforming process for hydrogen production is accompanied with unavoidable impurities. Impurities such as CO, $CO_2$, $H_2S$, $NH_3$, and $CH_4$ in hydrogen could cause negative effects on fuel cell performance. Those effects are kinetic losses due to poisoning of electrode catalysts, ohmic losses due to proton conductivity reduction including membrane and catalyst ionomer layers, and mass transport losses due to degrading catalyst layer structure and hydrophobic property. Hydrogen produced from reformer eventually contains around 73% of $H_2$, 20% or less of $CO_2$, 5.8% of less of $N_2$, or 2% less of $CH_4$, and 10ppm or less of CO. Most impurities are removed using pressure swing adsorption (PSA) process to get high purity hydrogen. However, high purity hydrogen production requires high operation cost of reforming process. The effect of carbon dioxide on fuel cell performance was investigated in this experiment. The performance of PEM fuel cell was investigated using current vs. potential experiment, long run (10 hr) test, and electrochemical impedance measurement when the concentrations of carbon dioxide were 10%, 20% and 30%. Also, the concentration of impurity supplied to the fuel cell was verified by gas chromatography (GC).

  • PDF

GHG Reduction Effect through Smart Tolling: Lotte Data Communication Company (스마트톨링을 통한 온실가스 저감효과: 롯데정보통신 사례를 중심으로)

  • Roh, Tae-Woo
    • Journal of Digital Convergence
    • /
    • v.16 no.4
    • /
    • pp.87-94
    • /
    • 2018
  • Intelligent transportation systems are one of the most important new forms of infrastructure on domestic roads, and is a system that makes possible the most efficient movement of vehicles on a road. The High Pass system, which is a domestic intelligent transportation system, started a little later than in other countries but developed at a rapid pace. With the recent introduction of smart tolling technology, it provided an opportunity to stop and review the tolling system. This study aims to investigate the driving method and results of LDCC for domestic smart towing through case study. Unlike other companies, Lotte Data Communication Company has long invested in payment systems. It has little experience investing in infrastructure, but participated in the Smart Toll System at the Gwangan Bridge in cooperation with the Busan City government, to lead the development of intelligent transportation systems. LDCC, which has made new investments, not only exceeded its existing core competencies, but also upgraded Korea's tolling system's ability to reduce greenhouse gas emissions and improved its financial performance.

Visualization Technology of GIS Associated with Seismic Fragility Analysis of Buried Pipelines in the Domestic Urban Area (국내 도심지 매설가스배관의 지진취약도 분석 연계 GIS 정보 가시화 기술)

  • Lee, Jinhyuk;Cha, Kyunghwa;Song, Sangguen;Kong, Jung Sik
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.2
    • /
    • pp.177-185
    • /
    • 2015
  • City-based Lifeline is expected to cause significant social and economic loss accompanied the secondary damage such as paralysis of urban functions and a large fire as well as the collapse caused by earthquake. Earthquake Disaster Response System of Korea is being operated with preparation, calculates the probability of failure of the facility through Seismic Fragility Model and evaluates the degree of earthquake disaster. In this paper, the time history analysis of buried gas pipeline in city-based lifeline was performed with consideration for ground characteristics and also seismic fragility model was developed by maximum likelihood estimation method. Analysis model was selected as the high-pressure pipe and the normal-pressure pipe buried in the city of Seoul, Korea's representative, modeling of soil was used for Winkler foundation model. Also, method to apply developed fragility model at GIS is presented.

A Case Study on Development of Low-Carbon City against to the Climate Change : With a Focus on Pyeongtaek Sosabul-district CDM Project (기후변화에 대응한 저탄소 도시개발 사례분석 : 평택소사벌지구 CDM 사업을 중심으로)

  • Yun, Seong-Ho;Lee, Gyu-Hae;Park, Hojeong
    • Journal of Climate Change Research
    • /
    • v.3 no.2
    • /
    • pp.143-151
    • /
    • 2012
  • This study analyzes United Nations Framework Convention on Climate Change and domestic-foreign support policy for renewable, also confirms the need for sound and sustainable development to minimize adverse impacts on the environment. Main source of greenhouse gas emissions leading to global warming needs to be resolved through the introduction of renewable energy system by developing low-carbon city. Case studies show the directions for practical response to climate change on the basis of introduction of renewable energy. This case studies can be served as the base model that reduces greenhouse gases with the introduction of renewable energy facilities in the new land development project and obtains economic benefits from CDM project.

Application of LEAP Model to Reduce GHG Emissions from Residential Sector (LEAP 모형을 이용한 가정 부문 온실가스 저감효과 분석)

  • Jo, Mi-hyun;Park, Nyun-Bae;Jeon, Eui-Chan
    • Journal of Climate Change Research
    • /
    • v.4 no.3
    • /
    • pp.211-219
    • /
    • 2013
  • This study uses the LEAP model that is a long-term energy analysis model to analyze reduction potential on S city residential sector energy usage for greenhouse gas emission. Energy consumption of S-si in 2009 is consumed most in residential and commerce sector by 39.1%. Also, energy and greenhouse gas emission of residential sector is expected to increase due to increase of households. Therefore, greenhouse gas reduction measures are desperately required in residential sector. For this study recognizes energy consumption of S-si residential sector and has established reduction measure of S-si residential sector greenhouse gas through literature search on domestic and foreign climate change correspondence policies. Also, construction of greenhouse gas reduction potential by reduction measures through LEAP model. There were a total of 5 reduction measures scenarios is Reference Scenario, LED Lighting, Energy Alternative, Green Life Practice, and Total Reduction Measure. As a result, greenhouse gas emission of Light Emitting Diode Lightings by 2020 was $1,181.0thousand\;tonCO_2eq$, decrease of 6.1% compared to the Reference Scenario and Greenhouse gas emission of Energy Alternative by 2020 was $1,171.6thousand\;tonCO_2eq$, decrease of 6.8% compared to the Reference Scenario. Greenhouse gas emission of Green Life Practice by 2020 was $1,128.7thousand\;tonCO_2eq$, decrease of 10.2% compared to the Reference Scenario. For Total Reduction Measures by 2020 emission was $966.9thousand\;tonCO_2eq$, decrease 23.1% compared to Reference Scenario.

A Study of Welding Conditions for Plastic Piping (플라스틱 배관의 접합 조건에 관한 연구)

  • Lee, C.K.;Lee, W.R.;Park, C.Y.
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.5
    • /
    • pp.564-569
    • /
    • 2011
  • The current establishment of city gas piping polyethylene (PE) tube used as bonding state or part of the health or safety of fusion is very important. A part of these fusion methods to determine the soundness of the short-term trials and long-term tests can be largely classified. Typical tests include short-term strength, tensile strength, impact strength, compressive strength, resiliency and compression. Polyethylene (PE) pipes installed in the domestic terms of overall penetration rate of 45% has been used. However, polyethylene (PE) pipes have reliability problems, and these occurs mostly in part by defective welding. Therefore, the test is necessary for safety. Non-destructive methods (ultrasonic testing) are difficult to be used. Therefore, Polypropylene copolymer (PP-C), polypropylene homopolymer (PP-H), and polyethylene (PE) pipe are used. Fusion of these materials is necessary in these field however, its technical, and basic research has not been studied well. In this research, short-term strength of welding parts, its tensile strength, hardness, fatigue, and microstructure have been analyzed to find the optimum process conditions to improve mechanical properties.

Characteristics of Contamination and Fate for PCDD/Fs in Ambient Air, Cheongju (청주지역 대기 중 PCDD/Fs 오염특성 및 거동)

  • Kim, Kyoung-Soo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.4
    • /
    • pp.294-299
    • /
    • 2009
  • To investigate the pollution levels and behavior of PCDD/Fs in ambient air, gaseous and particulate phase concentrations were measured at Cheongju city in 2008. The samples were collected at 3 sites (industrial, residential/commercial and rural region) by season (winter, spring and summer). The concentrations and TEQ concentrations of PCDD/DFs ranged from 0.73 to 2.43 pg/$m^3$ and from 0.007 to 0.122 pg TEQ/$m^3$, respectively. These levels were similar or lower than that of other domestic researches (from n.d. to 2.149 pg TEQ/$m^3$). The concentration of PCDD/Fs in particulate phase (from 54% to 98% against total concentration) were higher than that of gas phase. As a results of comparison of congener patterns and statistical analysis, PCDD/Fs was mainly influenced by a combustion process in ambient air, Cheongju city.

The Effect of a Change in Natural Gas Price on Korean Economy (천연가스가격 변화의 경제적 효과)

  • Shin, Dong-Cheon
    • Environmental and Resource Economics Review
    • /
    • v.17 no.2
    • /
    • pp.313-326
    • /
    • 2008
  • This paper is concerned with the effect of an increase in the import price of LNG on the Korean economy and industries. A computable general equilibrium analysis is applied to compute the comparative-statical effect of 10% rise of LNG price. The price increase places relatively heavy burden on the city gas, oil products and thermal power, decreasing their outputs and domestic sales by relatively larger percentages than other industries. The 10% increase in the LNG price reduces GDP by 0.4% and raises the general price level by 0.08%. The increase in oil price resulting in the same decreasing rate of GDP caused by the 10% LNG price rise turns out to raise the general price level and reduce the consumer's welfare in terms of equivalent variation by less percentage than the increase in LNG price.

  • PDF

Effect of Carbon Dioxide in Fuel on the Performance of PEMFC (연료중의 이산화탄소 불순물에 의한 고분자전해질연료전지의 성능변화 연구)

  • Seo, Jung-Geun;Kwon, Jun-Taek;Kim, Jun-Bom
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.1
    • /
    • pp.42-46
    • /
    • 2008
  • Even though fuel cell have high efficiency when pure hydrogen from gas tank is used as a fuel source, it is more beneficial to generate hydrogen from city gas (mainly methane) in residential application such as domestic or office environments. Thus hydrogen is generated by reforming process using hydrocarbon. Unfortunately, the reforming process for hydrogen production is accompanied with unavoidable impurities. Impurities such as CO, $CO_2$, $H_2S$, $NH_3$, $CH_4$, and $CH_4$ in hydrogen could cause negative effects on fuel cell performance. Those effects are kinetic losses due to poisoning of the electrode catalysts, ohmic losses due to proton conductivity reduction including membrane and catalyst ionomer layers, and mass transport losses due to degrading catalyst layer structure and hydrophobic property. Hydrogen produced from reformer eventually contains around 73% of $H_2$, 20% or less of $CO_2$, 5.8% of less of $N_2$, or 2% less of $CH_4$, and 10ppm or less of CO. This study is aimed at investigating the effect of carbon dioxide on fuel cell performance. The performance of PEM fuel cell was investigated using current vs. potential experiment, long run(10 hr) test, and electrochemical impedance measurement when the concentrations of carbon dioxide were 10%, 20% and 30%. Also, the concentration of impurity supplied to the fuel cell was verified by gas chromatography(GC).