• Title/Summary/Keyword: Domestic Wastewater

Search Result 321, Processing Time 0.033 seconds

Anaerobic Hydrogen Fermentation and Membrane Bioreactor (MBR) for Decentralized Sanitation and Reuse-Organic Removal and Resource Recovery

  • Paudel, Sachin;Seong, Chung Yeol;Park, Da Rang;Seo, Gyu Tae
    • Environmental Engineering Research
    • /
    • v.19 no.4
    • /
    • pp.387-393
    • /
    • 2014
  • The purpose of this study is to evaluate integrated anaerobic hydrogen fermentation and membrane bioreactor (MBR) for on-site domestic wastewater treatment and resource recovery. A synthetic wastewater (COD 17,000 mg/L) was used as artificial brown water which will be discharged from urine diversion toilet and fed into a continuous stirred tank reactor (CSTR) type anaerobic reactor with inclined plate. The effluent of anaerobic reactor mixed with real household grey water (COD 700 mg/L) was further treated by MBR for reuse. An optimum condition maintained in anaerobic reactor was HRT of 8 hrs, pH 5.5, SRT of 5 days and temperature of $37^{\circ}C$. COD removal of 98% was achieved from the overall system. Total gas production rate and hydrogen content was 4.6 L/day and 52.4% respectively. COD mass balance described the COD distribution in the system via reactor byproducts and effluent COD concentration. The results of this study asserts that, anaerobic hydrogen fermentation combined with MBR is a potent system in stabilizing waste strength and clean hydrogen recovery which could be implemented for onsite domestic wastewater treatment and reuse.

Stochastics and Artificial Intelligence-based Analytics of Wastewater Plant Operation

  • Sung-Hyun Kwon;Daechul Cho
    • Clean Technology
    • /
    • v.29 no.2
    • /
    • pp.145-150
    • /
    • 2023
  • Tele-metering systems have been useful tools for managing domestic wastewater treatment plants (WWTP) over the last decade. They mostly generate water quality data for discharged water to ensure that it complies with mandatory regulations and they may be able to produce every operation parameter and additional measurements in the near future. A sub-big data group, comprised of about 150,000 data points from four domestic WWTPs, was ready to be classified and also analyzed to optimize the WWTP process. We used the Statistical Product and Service Solutions (SPSS) 25 package in order to statistically treat the data with linear regression and correlation analysis. The major independent variables for analysis were water temperature, sludge recycle rate, electricity used, and water quality of the influent while the dependent variables representing the water quality of the effluent included the total nitrogen, which is the most emphasized index for discharged flow in plants. The water temperature and consumed electricity showed a strong correlation with the total nitrogen but the other indices' mutual correlations with other variables were found to be fuzzy due to the large errors involved. In addition, a multilayer perceptron analysis method was applied to TMS data along with root mean square error (RMSE) analysis. This study showed that the RMSE in the SS, T-N, and TOC predictions were in the range of 10% to 20%.

Effect of Ozonation in Microfiltration Membrane for Wastewater Reuse (정밀여과법 하수재이용 공정에서 오존의 전처리 효과에 관한 연구)

  • Moon, Seong-Yong;Ahn, Se-Hyuk;Lee, Sang-Hyup;Park, Jong-Hoon;Hong, Suk-Won;Choi, Yong-Su
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.4
    • /
    • pp.535-543
    • /
    • 2006
  • The Ozone oxidation process was applied to increase the efficiency of reuse process when treating the secondary effluent by the membrane system. This paper focus on decreasing efficiency of membrane fouling, because of membrane fouling reduction by ozone and evaluation of application of the ozone oxidation. The feed water was secondary effluent from BNR process. The result shows that the ozone pretreatment can reduce membrane fouling effectively. Also, the improvement of treated water quality was obvious. The reduction of the membrane fouling led decrease of following pollutant and increase of lnner adsorptive ability of hydrophilic organic matter and decrease of molecular weight. MF membrane process alone can meet the domestic reuse water standards. And ozone pretreatment process also can increase the removal rates of turbidity, COD, nitrogen, and color.

Performances of Intermittently Aerated and Dynamic Flow Activated Sludge Process (2단간헐폭기 및 유로변경 간헐폭기 활성슬러지 시스템을 이용한 도시하수 처리)

  • 원성연;민경국;이상일
    • Journal of environmental and Sanitary engineering
    • /
    • v.13 no.1
    • /
    • pp.26-31
    • /
    • 1998
  • Removal of nitrogen and phosphate in wastewater is concerned to important for the prevention of eutrophication in receiving water and lake. Conventional activated sludge system designed for organics removal can be retrofitted only by modification of aeration basin to maintain anaerobic and aerobic state. Biological nutrient removal processes(BNR) such as Bardenpho, A$^{2}$/O, UCT, VIP were generally used for the treatment of wastewater. However these BNR processes used in large scale WWTP were not suitable in small scale WWTP(i.e., package type WWTP) due to relatively large fluctuation of flow rate and concentration of pollutants. The purpose of this research was to develop the compact, effective and economical package type WWTP for the removals of carbon and nitrogen in small scale wastewater. Intermittently aerated activated sludge system (IADFAS) were investigated for removal of nitrogen in both domestic wastewater, Bardenpho process was also evaluated. Nitrogen removal of IAAS, IADFAS, Bardenpho were 75, 77 and 67%, respectively.

  • PDF

Application and Development of Activated Carbon Adsorption in Wastewater

  • Zhang, DianYa;Deng, ChengXun;Deng, Xu;Yu, ZhiMin
    • Journal of Urban Science
    • /
    • v.8 no.2
    • /
    • pp.19-23
    • /
    • 2019
  • With the continuous progress of modern science and technology and the rapid development of economy, with the continuous development of society, the treatment of industrial and domestic sewage has become a hot concern. Toxic substances and non-degradable pollutants in wastewater also have a great impact on the environment. This paper mainly expounds the current environmental situation and the adsorption mechanism of activated carbon. And the application and development of activated carbon adsorption in wastewater.

A Study on the Small Wastewater Collection System for Rural Area (농촌지역 소규모 오수차집시스템에 관한 연구)

  • Yoon, Chun-Gyeong;Yoo, Chan
    • Journal of Korean Society of Rural Planning
    • /
    • v.4 no.2
    • /
    • pp.20-28
    • /
    • 1998
  • A small wastewater collection system for rural area was reviewed and the small diameter gravity (SDG) was thought to be the most appropriate. The pilot-scale field experiment was performed for 15 months and the result is presented. The wastewater used for experiment was the effluent of septic tank in Kon-Kuk University, and components are similar to normal domestic wastewater. The SDG experimental system included 2" PVC pipe and reverse-sloped lower section is included. No clogging problem by solids was experienced at the points where flow direction changed. The pipe-breaking by freezing was experienced during the cold weather, thus proper protection may be required where severe weather is expected.

  • PDF

The System of Sewage and Domestic Wastewater Treatment Plants in Tan-Sui River Basin

  • Ko, Chun-Han
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2002.04a
    • /
    • pp.26.2-39
    • /
    • 2002
  • Tan-Sui River Basin covers Taipei metropolitan area of 2,726 square kilometers with more than six million residents. Since 1988, Taiwan government started to plan and construct an integrated sewerage system, consisted by both separated and concentrated trunk sewers, wastewater treatment plants and ocean outfalls. This presentation will introduce the master plan and major facilities of Tan-Sui River Basin sewerage system. Other measures to protect general water quality and the environment of adjacent river basin area of Tan-Sui River and her tributaries by Taiwan EPA will be presented as well.

  • PDF

Pilot Study on the Advanced Treatment of Combined Wastewater with Sewage as a Cosubstrate (가정하수를 cosubstrate로서 사용한 하수-염색폐수-공장폐수의 합병 고도처리 pilot plant 연구)

  • Kim, Mee-Kyung;Seo, Sang-Jun;Rhew, Doug-Hee;Jung, Dong-Il
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.2
    • /
    • pp.227-234
    • /
    • 2009
  • In this research, a retrofitting process, which consists of a pretreatment system (coagulation) for dye wastewater combined with a biological nutrient system (MLE process using media), for a sewage treatment plant that has to treat dye wastewater efficiently with domestic wastewater were developed and a pilot plant was operated for verifying adoptability and performance of the developed advanced process for dye wastewater. From the results of the pilot plant operation, BOD 52.9%, $COD_{Cr}$ 55.9%, and color 71.3% were removed in pretreatment of coagulation process and the biodegradability of dye wastewater was improved to $0.32{\sim}0.59BOD/COD_{Cr}$ of the coagulated wastewater from $0.29{\sim}0.43BOD/COD_{Cr}$ of the raw dye wastewater. The final effluent concentrations were BOD of 8 mg/L, $COD_{Cr}$ of 43 mg/L, $COD_{Mn}$ of 18 mg/L, T-N of 8 mg/L, and T-P of 1.3 mg/L, respectively. Color was removed from 1655 to 468 unit by coagulation and then to 123 unit by MLE process. The HPLC analysis of aromatic amines in wastewater showed that decolorization was achieved by cometabolism while aromatic amines were produced by cleavage of azo bonds under anaerobic conditions and these products were removed in an aerobic tank subsequently. Nitrification rates of attached and suspended microorganisms were evaluated comparatively and the acclimating conditions of bacteria on media were validated by the scanning electron microscope.