• Title/Summary/Keyword: Domestic Derailment Regulation

Search Result 3, Processing Time 0.022 seconds

Study of Influence of Wheel Unloading on Derailment Coefficient of Rolling Stock (철도차량의 윤중 감소가 탈선계수에 미치는 영향 연구)

  • Koo, Jeong Seo;Oh, Hyun Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.2
    • /
    • pp.177-185
    • /
    • 2013
  • A new theoretical derailment coefficient model of wheel-climb derailment is proposed to consider the influence of wheel unloading. The derailment coefficient model is based on the theoretical derailment model of a wheelset that was developed to predict the derailment induced by train collisions. Presently, in domestic derailment regulations, a derailment coefficient of 0.8 is allowable using Nadal's formula, which is for a flange angle of $60^{\circ}$ and a friction coefficient of 0.3. However, theoretical studies focusing on different flange angles to justify the derailment coefficient of 0.8 have not been conducted. Therefore, this study theoretically explains a derailment coefficient of 0.8 using the proposed derailment coefficient model. Furthermore, wheel unloading of up to 50% is accepted without a clear basis. Accordingly, the correlation between a wheel unloading of 50% and a derailment coefficient of 0.8 is confirmed by using the proposed derailment coefficient model. Finally, the validity of the proposed derailment coefficient model is demonstrated through dynamic simulations.

Research on the running regulations of high speed train during an earthquake (지진 시 고속철도 운행 규제 기준 연구)

  • Kim, Sung-Il;Yu, Won-Hee;Kim, Sung-Ryul;Choi, Ji-Yong;Kim, Dae-Sang
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.112-122
    • /
    • 2006
  • Is the high speed train with 300km/h running speed safe from derailment when it meets the mid or small-size earthquakes? In the present step, it is not so easy to judge whether it'll be derailed or not during an earthquake. However, we could elevate the running safety of high speed train as making it slow or even stop. The main objective of this study is to make the domestic running regulation and the re-running manual for high speed train with reference to the standards of France, Japan etc. To do so, numerical analysis and experiment will be performed from the next year. In addition, we'll evaluate possible places of derailment during an earthquake and make a database based on the Geographic Information System to effectively manage them.

  • PDF

Running Safety Analysis of Railway Vehicle passing through Curve depending on Rail Inclination Change (레일 경좌 변화에 따른 곡선부 통과열차의 주행안전성 해석)

  • Kim, Moon Ki;Eom, Beom Gyu;Lee, Hi Sung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.3
    • /
    • pp.199-208
    • /
    • 2013
  • So far today, there is a speed limit by the radius of curve based on operation regulation in domestic railway, however a study for the maximum running speed at the curved section without any derailment would be necessary. The two major factors related to the running safety of railway vehicle are classified as the railway vehicle condition and the track condition. In terms of the rail inclination among many other factors, the determination of rail inclination within the possible limit is necessary for the geometrical structure of the optimum track. The disregard of the geometrical parameter related to the rail inclination may cause a serious problem to the running safety of railway vehicle. This study is focusing on the analyzing of running safety regard to the change of rail inclination among the many other parameters to improve derailment safety, so that there is an affection analysis of the running safety regard to the change of rail inclination in the ideal and geometric track condition. Also There is an affection analysis of the running safety regard to the simultaneous change of rail inclination and the running speed at the curved section. According to analysis results of running safety, In case that the left and right rail inclination are 1/40, the running safety of this condition defined than other conditions. Also, the rail inclination of conventional lines is 1/40, Therefore, the railway vehicle passing through curve is safe when the railway vehicle runs in conventional lines.