• Title/Summary/Keyword: Domestic Boiler

Search Result 100, Processing Time 0.027 seconds

A Study on the Characteristics of Pressure Distribution for Heat Exchanger Types of Domestic Gas Boiler (가정용 가스보일러 열교환기 유형에 따른 압력분포특성에 관한 연구)

  • 최경석;오율권;차경옥
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.4
    • /
    • pp.22-28
    • /
    • 2001
  • Heat transfer and pressure distribution for heat exchanger type of domestic gas boiler are different from shape, pitch, thickness of fin and array of pipe respectively. In order to measure the pressure distribution across the heat exchanger, a suction type wind tunnel was constructed and velocity distribution was measured for pilot tube(4 point) of rack type. The experiments were performed for 5 different air flow mass, rpm=3,6,9,12,15 and transverse axis of heat exchanger(x-length) is 5cm respectively. Results showed that above 9.5m/s, pressure distribution dispersion for wet type of heat exchanger is on the increase and above 5.5m/s, pressure distribution dispersion for dry type of heat exchanger is on the increase. Also, pressure distribution dispersion by comparing two different types heat exchanger, dry type of heat exchanger showed a higher augmentation than wet type of heat exchanger.

  • PDF

Performance Evaluation of Wall Blower Nozzle using Erosion Analysis (침식 해석을 이용한 월 블로워 노즐의 성능 예측)

  • Paek, Jae Ho;Jang, llkwang;Jang, Yong Hoon
    • Tribology and Lubricants
    • /
    • v.34 no.5
    • /
    • pp.175-182
    • /
    • 2018
  • Accumulation of coal ash at the boiler wall reduces combustion and fuel efficiency. The design of a wall blower is important to effectively remove coal ash. We present numerical results for the removal of coal ash from boiler walls of domestic coal-fired power plants, associated with the computational fluid dynamics for the flow from spray nozzle to boiler wall. The numerical model simulates an erosion process in which the multiphase fluid comprising saturated vapor and fluid water is sprayed from the nozzle, and the water particles impact the boiler wall. We adopt the Finnie erosion model for water particles. We obtain the erosion rate density as a function of nozzle angle and its injection angle. As excessive coal ash removal usually induces damage to the boiler wall, the removal operation typically focuses on a large area with uniform depth rather than the maximum removal of coal ash at a specific location. In order to estimate the removal performance of the wall blower nozzle considering several functionality and reliability factors, we evaluate the optimal injection and nozzle angles with respect to the biggest cumulative and highest erosion rates, as well as the widest range and lowest standard deviation of the erosion rate distribution.

The Development of Boiler Fuel Control Algorithm and Distributed Control System for Coal-Fired Power Plant (석탄화력발전소 보일러 연료제어 알고리즘과 분산제어시스템의 개발)

  • Lim, Gun-Pyo;Lee, Heung-Ho
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.62 no.1
    • /
    • pp.36-44
    • /
    • 2013
  • This paper is written for the development and application of boiler fuel control algorithm and distributed control system of coal-fired power plant by the steps of design, coding, simulation test, site installation and site commissioning test. Fuel control algorithm has the upper algorithm and it is boiler master control algorithm that controls the fuel, feed water, air by generation output demand. Generation output demand by power load influences fuel control. Because fuel can not be supplied fast to the furnace of boiler, fuel control algorithm was designed adequately to control the steam temperature and to prevent the explosion of boiler. This control algorithms were coded to the control programs of distributed control systems which were developed domestically for the first time. Simulator for coal-fired power plant was used in the test step. After all of distributed control systems were connected to the simulator, the tests of the actual power plant were performed successfully. The reliability was obtained enough to be installed at the actual power plant and all of distributed control systems had been installed at power plant and all signals were connected mutually. Tests for reliability and safety of plant operation were completed successfully and power plant is being operated commercially. It is expected that the project result will contribute to the safe operation of domestic new and retrofit power plants, the self-reliance of coal-fired power plant control technique and overseas business for power plant.

Study on the Multi-Zone Furnace Analysis Method for Power Plant Boiler (발전용 보일러에 대한 다중영역분할 화로해석 기법의 활용성 연구)

  • Baek, SeHyun;kim, Donggyu;Lee, Jang Ho
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.4
    • /
    • pp.427-432
    • /
    • 2020
  • In this study, a multi-zone furnace analysis method that couples a 1D energy and mass balance calculation with a 3D radiative heat transfer calculation is tested in order to verify its reliability. The calculated results for a domestic 500 MW capacity coal-fired boiler furnace were compared with the design data of the boiler manufacturer and CFD analysis, and a good agreement was achieved. Although this calculation method is less sophisticated than the CFD furnace analysis, it has an advantage in terms of calculation time while being able to provide the furnace behavior according to the fuel characteristics and operational variable changes. Therefore, it is expected to be useful for boiler operation diagnosis and daily fuel/operation planning.

Numerical Analysis of Combustion and Heat Transfer of Domestic Gas Boiler Equipped with 2-stage Heat Exchanger (수치해법을 이용한 2단 열교환기 장착 가정용 보일러 연소실의 연소 및 열전달 특성 해석)

  • Kang, Seung-Kyu;Choi, Kyoung-Suhk;Kwon, Jeong-Rack
    • Journal of the Korean Institute of Gas
    • /
    • v.14 no.5
    • /
    • pp.1-6
    • /
    • 2010
  • In this work, a numerical investigation is performed for the combustion chamber of domestic gas boiler with 1-stage and 2-stage heat exchangers. The fluid flow and heat transfer performance is simulated with a structure change of heat exchanger. The numerical solution shows that the heat transfer of the 2-stage heat exchanger is about 24% higher than that of the 1-stage heat exchanger, while the pressure loss of the 2-stage heat exchanger increases. The temperature of combustion chamber with 2-stage heat exchanger is lower than that of 1-stage. This effect reduces thermal NOx with decrease of high temperature staying time of the combustion gas.

Analysis of Hydrogen Fuel for Existing Domestic Boilers and New Heat Recovery Boilers with Water Spray (기존 가정용 보일러 및 신형 물분사 폐열회수 보일러에 대한 수소 연료의 평가)

  • LEE, CHANG-EON;KIM, DAEHOON;PARK, TAEJOON;MOON, SEOKSU
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.2
    • /
    • pp.210-222
    • /
    • 2020
  • Hydrogen is evaluated as one of new energy sources that can overcome the limitations and pollution problems of conventional fossil fuels. Although hydrogen is free from CO2, attention is required in NOx emission and flame stability in order to use hydrogen in existing gas fuel system. This study investigates the differences in operating characteristics and its problems to be modified when the hydrogen is used as fuel for existing domestic boilers and new heat recover boilers with water spray. When the hydrogen is used in domestic boilers, the efficiency is about 6-7% lower than methane due to higher partial vapor pressure in the exhaust gas at usual operating conditions above 60℃ in combustion chamber outlet temperature. On the other hand, the heat recovery boiler with water spray (HR-B/WS-X) is expected to achieve up to 95% efficiency, which is 12% more efficient than conventional boilers. It can also significantly reduce NOx emission by lowering the flame temperature.

Study on the Suppression of Sulfur Trioxide in High Sulfur Boiler (고유황 보일러에서의 Sulfur Trioxide의 억제에 대한 연구)

  • Choi, Sung-Bu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.28 no.4
    • /
    • pp.455-463
    • /
    • 2011
  • The average sulfur content of crude oil is 2.2%. Coal is about 0.3 to 4.0 percent of the sulfur gases or particles being discharged into the atmosphere through the chimney as 1 to 2% $SO_3$(Sulfur trioxide) and about 95% of the $SO_2$ is reported. $SO_3$ gas, which has many different causes of, as the combustion of sulfur containing fuel during the air due to the excess $SO_2$ gas is oxidized to $SO_3$ gas. Sulfur trioxide emitted from high sulfur heavy oil fired boiler caused white plume in stack and high temperature and cold end corrosion of facilities. So, in order to control sulfur trioxide concentration of Fuel gas in boiler, various of additives are used in other foreign. They are injected to Fuel Oil and consumed in boiler and reduce ash and the conversion rate of sulfur trioxide. In domestic, MgO compounds are used as additives but the total volume of them are made from other foreign company. In this study, MgO compounds were developed with liquid MgO compounds and field application was accomplished. The effect of newly developed chemicals and process were nearly equal to foreign products. In Consequent, the chemicals and process produced by newly developed technology can be substituted for foreign products and reduce the cost of plant operation.