• Title/Summary/Keyword: Domain wall

Search Result 387, Processing Time 0.04 seconds

Frequency-Domain Analysis for Motion of Floating Structures with Perforated Wall (유공벽이 설치된 부유체 동요 평가를 위한 주파수 영역 해석)

  • Jeongsoo Kim;Youn Ju Jeong;Young-Taek Kim
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.36 no.1
    • /
    • pp.1-10
    • /
    • 2024
  • As increasing demands for a floating structure expanded from offshore industry facilities to living facilities, it has emerged that necessity of techniques to reduce motions of a floating structure. This study present a floating structure with porosity on the outer surface of the floater. Under each regular and irregular wave, responses of the floater was investigated in frequency domain. The proposed structure is composed of inner and outer floaters, which are connected to each other and the outer wall is perforated, and the heave and the pitch of floaters with different perforation rates (0~30%) were compared with at both the center and the edge. The results showed that pitch responses can be decreased by increasing of perforation rate of the floater. Comparing with responses of the non-perforated floater, those of the proposed floating structure were reduced to above 10% and 2%, respectively for regular and irregular wave conditions.

ANALYSIS OF VORTEX SHEDDING PHENOMENA AROUND PANTOGRAPH PANHEAD FOR TRAIN USING LARGE EDDY SIMULATION (LES를 이용한 판토그라프 팬헤드의 와 흘림 현상 해석)

  • Jang, Yong-Jun
    • Journal of computational fluids engineering
    • /
    • v.16 no.2
    • /
    • pp.17-23
    • /
    • 2011
  • The turbulent flow and vortex shedding phenomena around pantograph panhead of high speed train were investigated and compared with available experimental data and other simulations. The pantograph head was simplified to be a square-cross-section pillar and assumed to be no interference with other bodies. The Reynolds number (Re) was 22,000. The LES(large eddy simulation) of FDS code was applied to solve the momentum equations and the Wener-Wengle wall model was employed to solve the near wall turbulent flow. Smagorinsky model($C_s$=0.2) was used as SGS(subgrid scale) model. The total grid numbers were about 9 millions and the analyzed domain was divided into 12 multi blocks which were communicated with each other by MPI. The time-averaged mainstream flows were calculated and well compared with experimental data. The phased-averaged quantities had also a good agreement with experimental data. The near-wall turbulence should be carefully treated by wall function or direct resolution to get successful application of LES methods.