• Title/Summary/Keyword: Domain matching epitaxy

Search Result 2, Processing Time 0.015 seconds

Epitaxial Growth of MgO and CoFe/MgO on Ge(001) Substrates by Molecular Beam Epitaxy

  • Jeon, Kun-Rok;Park, Chang-Yup;Shin, Sung-Chul
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2009.12a
    • /
    • pp.190-190
    • /
    • 2009
  • We report the epitaxial growth of MgO and CoFe/MgO on Ge (001) substrates using molecular beam epitaxy. It was found that the epitaxial growth of a MgO film on Ge could be realized at a low growth temperature of $125{\pm}5^{\circ}C$ and the MgO matches the Ge with a cell ratio of $\sqrt{2}$:1 which renders MgO rotated by $45^{\circ}$ relative to Ge. In-situ and ex-situ structural characterizations reveal the epitaxial crystal growth of bcc CoFe/MgO on Ge with the in-plane crystallographic relationship of CoFe(001)[100] || MgO(001)[110] || Ge(001)[100], exhibiting sharp interfaces in the (001) matching planes. The saturation magnetization of the sample is $1430{\pm}20$ emu/cc, which is comparable to the value of bulk CoFe.

  • PDF

Epitaxial Growth of ZnO Nanowires on Sapphire (001) Substrates Using a Hydrothermal Process (수열합성법을 이용한 산화아연 나노와이어의 에피택시 성장)

  • Ham, Daseul;Jeong, Byeong Eon;Yang, Myeong Hun;Lee, Jong Kwan;Choi, Young Bin;Kang, Hyon Chol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.7
    • /
    • pp.502-509
    • /
    • 2018
  • Epitaxial ZnO nanowires (NWs) were synthesized on sapphire (001) substrates using a hydrothermal process. The effects of the pH value of the precursor solution on the structural and optical properties of the resulting NWs was studied. The epitaxial relationship and the domain matching configuration between the sapphire (001) substrate and the as-grown ZnO NWs were determined using synchrotron X-ray diffraction measurements. The (002) plane of $w{\ddot{u}}rtzite$ ZnO NW grows in the surface normal direction parallel to the sapphire (001) direction. However, three types of in-plane domain matching configurations were observed, such as the on-position, $30^{\circ}$-rotated position, and ${\pm}8.5^{\circ}$-rotated position relative to the on-position, which might be attributed to inheriting the in-plane domain configuration of the ZnO seed layer.