• Title/Summary/Keyword: Domain Adaptation

검색결과 160건 처리시간 0.033초

잡음음성 음향모델 적응에 기반한 잡음에 강인한 음성인식 (Noise Robust Speech Recognition Based on Noisy Speech Acoustic Model Adaptation)

  • 정용주
    • 말소리와 음성과학
    • /
    • 제6권2호
    • /
    • pp.29-34
    • /
    • 2014
  • In the Vector Taylor Series (VTS)-based noisy speech recognition methods, Hidden Markov Models (HMM) are usually trained with clean speech. However, better performance is expected by training the HMM with noisy speech. In a previous study, we could find that Minimum Mean Square Error (MMSE) estimation of the training noisy speech in the log-spectrum domain produce improved recognition results, but since the proposed algorithm was done in the log-spectrum domain, it could not be used for the HMM adaptation. In this paper, we modify the previous algorithm to derive a novel mathematical relation between test and training noisy speech in the cepstrum domain and the mean and covariance of the Multi-condition TRaining (MTR) trained noisy speech HMM are adapted. In the noisy speech recognition experiments on the Aurora 2 database, the proposed method produced 10.6% of relative improvement in Word Error Rates (WERs) over the MTR method while the previous MMSE estimation of the training noisy speech produced 4.3% of relative improvement, which shows the superiority of the proposed method.

A Novel Approach For Component Classifications And Adaptation Using JALTREE Algorithm

  • Jalender, B.;Govardhan, Dr. A
    • International Journal of Computer Science & Network Security
    • /
    • 제22권2호
    • /
    • pp.115-122
    • /
    • 2022
  • Component adaptation is widely recognized as one of the main problems of the components, used in component based software engineering (CBSE). We developed methods to adjust the components classified by the keywords. Three main methods are discussed in this article those methods are combined with several domain component interfaces, high level simple notation for the adapter design patterns. The automated process for classifying high-level components are using adaptation is novel to software engineering domain. All Specifications and many technologies for re-using software, CBD and further developments have been emerged in recent years. The effects of these technologies on program quality or software costs must be analyzed. The risk concerns a single technology and must identify its combinations. In this paper, we are going to discuss the methods to adapt components of different technologies

상태레벨 공유를 이용한 MLLR 적응화의 회귀클래스 생성에 관한 연구 (A Study on Regression Class Generation of MLLR Adaptation Using State Level Sharing)

  • 오세진;성우창;김광동;노덕규;송민규;정현열
    • 한국음향학회지
    • /
    • 제22권8호
    • /
    • pp.727-739
    • /
    • 2003
  • 본 논문에서는 HM-Net (Hidden Markov Network)을 다양한 태스크에의 적용과 화자의 특성을 효과적으로 나타내기 위해 HM-Net 음성인식 시스템에 MLLR (Maximum Likelihood Linear Regression) 적응방법을 도입하였으며, HM-Net 학습 알고리즘을 개량하여 회귀클래스 생성방법을 제안한다. 제안방법은 PDT-SSS (Phonetic Decision Tree-based Successive State Splitting)알고리즘의 문맥방향 상태분할에 의한 상태레벨 공유를 이용한 방법이다. 즉, 문맥방향의 각 상태에 적응화자 음성데이터에 포함된 문맥정보를 분할하여 적응화될 음소환경을 결정하는 것이다. 따라서 제안방법은 새로운 화자로부터 문맥정보와 적응화 데이터의 발성 양에 의존하여 결정된 많은 적응 파라미터들을 (평균, 분산) 자유롭게 제어할 수 있게 된다. 제안방법의 유효성을 확인하기 위해 국어공학센터 (KLE) 452 데이터와 항공편 예약관련 (YNU200) 연속음성을 대상으로 인식실험을 수행한 결과, 음소인식, 단어인식, 연속음성인식에 대해서, 평균 34∼37%, 평균 9%, 평균 20%의 성능 향상을 각각 보였다. 또한 적응화 데이터의 양에 따른 인식성능 비교에서 제안방법을 적용한 인식 시스템이 적응 데이터의 양이 적은 경우에도 향상된 인식률을 보여 MLLR 적응방법의 특성을 만족하였다. 따라서 MLLR 적응방법을 도입한 HM-Net 음성인식 시스템에 제안한 회귀클래스 생성방법이 유효함을 확인할 수 있었다.

Mixup 정규화를 활용하여 적대적 도메인 적응 향상 (Utilizing Mixup Regularization to improve Adversarial Domain Adaptation)

  • 칼리나 바야르치멕;조영복
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2023년도 제67차 동계학술대회논문집 31권1호
    • /
    • pp.17-18
    • /
    • 2023
  • 비지도형 도메인 적응(UDA)에 대한 최근 연구는 도메인 적응에 대한 설명 및 전이 가능한 특징을 풀어 내기 위해 적대적 학습에 의존한다. 그러나 기존 방법에는 대상 도메인의 클래스 인식(class-aware) 정보를 고려하지 않고는 잠재 공간의 구별 가능성을 완전히 보장할 수 없다는 것과 소스 및 대상 도메인의 샘플만으로는 잠재 공간에서 도메인 불변(domain- invariant) 특성을 추출하기에 부족하다는 두 가지 문제가 있다고 알려져 있다. 본 논문에서는 기존 알려진 UDA의 도메인 적응시 발생되는 문제를 해결하기 위해 Adversarial Discriminative Domain Adaptation(ADDA)에서 mixup을 활용해 신경망의 로버스트네스를 향상시키는 것을 확인하였다.

  • PDF

Development of Case-adaptation Algorithm using Genetic Algorithm and Artificial Neural Networks

  • Han, Sang-Min;Yang, Young-Soon
    • Journal of Ship and Ocean Technology
    • /
    • 제5권3호
    • /
    • pp.27-35
    • /
    • 2001
  • In this research, hybrid method with case-based reasoning and rule-based reasoning is applied. Using case-based reasoning, design experts'experience and know-how are effectively represented in order to obtain a proper configuration of midship section in the initial ship design stage. Since there is not sufficient domain knowledge available to us, traditional case-adaptation algorithms cannot be applied to our problem, i.e., creating the configuration of midship section. Thus, new case-adaptation algorithms not requiring any domain knowledge are developed antral applied to our problem. Using the knowledge representation of DnV rules, rule-based reasoning can perform deductive inference in order to obtain the scantling of midship section efficiently. The results from the case-based reasoning and the rule-based reasoning are examined by comparing the results with various conventional methods. And the reasonability of our results is verified by comparing the results wish actual values from parent ship.

  • PDF

대화체 연속음성 인식을 위한 언어모델 적응 (Language Model Adaptation for Conversational Speech Recognition)

  • 박영희;정민화
    • 대한음성학회:학술대회논문집
    • /
    • 대한음성학회 2003년도 5월 학술대회지
    • /
    • pp.83-86
    • /
    • 2003
  • This paper presents our style-based language model adaptation for Korean conversational speech recognition. Korean conversational speech is observed various characteristics of content and style such as filled pauses, word omission, and contraction as compared with the written text corpora. For style-based language model adaptation, we report two approaches. Our approaches focus on improving the estimation of domain-dependent n-gram models by relevance weighting out-of-domain text data, where style is represented by n-gram based tf*idf similarity. In addition to relevance weighting, we use disfluencies as predictor to the neighboring words. The best result reduces 6.5% word error rate absolutely and shows that n-gram based relevance weighting reflects style difference greatly and disfluencies are good predictor.

  • PDF

Maximum mutual information estimation을 이용한 linear spectral transformation 기반의 adaptation (Maximum mutual information estimation linear spectral transform based adaptation)

  • 유봉수;김동현;육동석
    • 대한음성학회:학술대회논문집
    • /
    • 대한음성학회 2005년도 춘계 학술대회 발표논문집
    • /
    • pp.53-56
    • /
    • 2005
  • In this paper, we propose a transformation based robust adaptation technique that uses the maximum mutual information(MMI) estimation for the objective function and the linear spectral transformation(LST) for adaptation. LST is an adaptation method that deals with environmental noises in the linear spectral domain, so that a small number of parameters can be used for fast adaptation. The proposed technique is called MMI-LST, and evaluated on TIMIT and FFMTIMIT corpora to show that it is advantageous when only a small amount of adaptation speech is used.

  • PDF

다중 반송파 부호분할 다중접속 통신에서의 주파수 효율 향상을 위한 효율적인 전력 및 전송률 적응화 기법 (Efficient Power and Rate Adaptation Strategy for Improved Spectral Efficiency in Multi-Carrier DS-CDMA Communications)

  • 이예훈;김동호
    • 한국통신학회논문지
    • /
    • 제38A권8호
    • /
    • pp.697-703
    • /
    • 2013
  • 다중 반송파를 사용하는 직접 대역확산 부호분할 다중접속 통신시스템에서 주파수 효율 향상을 위한 전송 전력 및 전송률 적응화 시스템을 제안하고 그 성능을 분석하였다. 본 논문에서는 수신단에서 이상적인 채널상태 정보를 알고 있다는 가정 하에, 주파수 영역에서는 각 사용자의 부채널 중에서 가장 채널상태가 좋은 한 대역을 선택하여 전력을 할당하고 시간 영역에서는 목표 수신 품질을 만족하도록 전송률을 결합 조정하는 것을 제안하였다. 수학적 분석을 통하여 평균 전송 전력이 고정되어 있을 때 제안한 방식의 평균 데이터 전송률을 구하고 전력 혹은 전송률 적응화가 적용된 단일 반송파 부호분할 다중접속 통신시스템과 그 성능을 비교하였다.

DAKS: 도메인 적응 기반 효율적인 매개변수 학습이 가능한 한국어 문장 분류 프레임워크 (DAKS: A Korean Sentence Classification Framework with Efficient Parameter Learning based on Domain Adaptation)

  • 김재민;채동규
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 춘계학술발표대회
    • /
    • pp.678-680
    • /
    • 2023
  • 본 논문은 정확하면서도 효율적인 한국어 문장 분류 기법에 대해서 논의한다. 최근 자연어처리 분야에서 사전 학습된 언어 모델(Pre-trained Language Models, PLM)은 미세조정(fine-tuning)을 통해 문장 분류 하위 작업(downstream task)에서 성공적인 결과를 보여주고 있다. 하지만, 이러한 미세조정은 하위 작업이 바뀔 때마다 사전 학습된 언어 모델의 전체 매개변수(model parameters)를 학습해야 한다는 단점을 갖고 있다. 본 논문에서는 이러한 문제를 해결할 수 있도록 도메인 적응기(domain adapter)를 활용한 한국어 문장 분류 프레임워크인 DAKS(Domain Adaptation-based Korean Sentence classification framework)를 제안한다. 해당 프레임워크는 학습되는 매개변수의 규모를 크게 줄임으로써 효율적인 성능을 보였다. 또한 문장 분류를 위한 특징(feature)으로써 한국어 사전학습 모델(KLUE-RoBERTa)의 다양한 은닉 계층 별 은닉 상태(hidden states)를 활용하였을 때 결과를 비교 분석하고 가장 적합한 은닉 계층을 제시한다.

자가학습과 지식증류 방법을 활용한 LiDAR 3차원 물체 탐지에서의 준지도 도메인 적응 (Semi-Supervised Domain Adaptation on LiDAR 3D Object Detection with Self-Training and Knowledge Distillation)

  • 우정완;김재열;임성훈
    • 로봇학회논문지
    • /
    • 제18권3호
    • /
    • pp.346-351
    • /
    • 2023
  • With the release of numerous open driving datasets, the demand for domain adaptation in perception tasks has increased, particularly when transferring knowledge from rich datasets to novel domains. However, it is difficult to solve the change 1) in the sensor domain caused by heterogeneous LiDAR sensors and 2) in the environmental domain caused by different environmental factors. We overcome domain differences in the semi-supervised setting with 3-stage model parameter training. First, we pre-train the model with the source dataset with object scaling based on statistics of the object size. Then we fine-tine the partially frozen model weights with copy-and-paste augmentation. The 3D points in the box labels are copied from one scene and pasted to the other scenes. Finally, we use the knowledge distillation method to update the student network with a moving average from the teacher network along with a self-training method with pseudo labels. Test-Time Augmentation with varying z values is employed to predict the final results. Our method achieved 3rd place in ECCV 2022 workshop on the 3D Perception for Autonomous Driving challenge.