• Title/Summary/Keyword: Document Re-rank

Search Result 3, Processing Time 0.018 seconds

Performance Improvement by Cluster Analysis in Korean-English and Japanese-English Cross-Language Information Retrieval (한국어-영어/일본어-영어 교차언어정보검색에서 클러스터 분석을 통한 성능 향상)

  • Lee, Kyung-Soon
    • The KIPS Transactions:PartB
    • /
    • v.11B no.2
    • /
    • pp.233-240
    • /
    • 2004
  • This paper presents a method to implicitly resolve ambiguities using dynamic incremental clustering in Korean-to-English and Japanese-to-English cross-language information retrieval (CLIR). The main objective of this paper shows that document clusters can effectively resolve the ambiguities tremendously increased in translated queries as well as take into account the context of all the terms in a document. In the framework we propose, a query in Korean/Japanese is first translated into English by looking up bilingual dictionaries, then documents are retrieved for the translated query terms based on the vector space retrieval model or the probabilistic retrieval model. For the top-ranked retrieved documents, query-oriented document clusters are incrementally created and the weight of each retrieved document is re-calculated by using the clusters. In the experiment based on TREC test collection, our method achieved 39.41% and 36.79% improvement for translated queries without ambiguity resolution in Korean-to-English CLIR, and 17.89% and 30.46% improvements in Japanese-to-English CLIR, on the vector space retrieval and on the probabilistic retrieval, respectively. Our method achieved 12.30% improvements for all translation queries, compared with blind feedback in Korean-to-English CLIR. These results indicate that cluster analysis help to resolve ambiguity.

Query Expansion and Term Weighting Method for Document Filtering (문서필터링을 위한 질의어 확장과 가중치 부여 기법)

  • Shin, Seung-Eun;Kang, Yu-Hwan;Oh, Hyo-Jung;Jang, Myung-Gil;Park, Sang-Kyu;Lee, Jae-Sung;Seo, Young-Hoon
    • The KIPS Transactions:PartB
    • /
    • v.10B no.7
    • /
    • pp.743-750
    • /
    • 2003
  • In this paper, we propose a query expansion and weighting method for document filtering to increase precision of the result of Web search engines. Query expansion for document filtering uses ConceptNet, encyclopedia and documents of 10% high similarity. Term weighting method is used for calculation of query-documents similarity. In the first step, we expand an initial query into the first expanded query using ConceptNet and encyclopedia. And then we weight the first expanded query and calculate the first expanded query-documents similarity. Next, we create the second expanded query using documents of top 10% high similarity and calculate the second expanded query- documents similarity. We combine two similarities from the first and the second step. And then we re-rank the documents according to the combined similarities and filter off non-relevant documents with the lower similarity than the threshold. Our experiments showed that our document filtering method results in a notable improvement in the retrieval effectiveness when measured using both precision-recall and F-Measure.

Hypertext Retrieval System Using XLinks (XLinks를 이용한 하이퍼텍스트 검색 시스템)

  • Kim, Eun-Jeong;Bae, Jong-Min
    • The KIPS Transactions:PartD
    • /
    • v.8D no.5
    • /
    • pp.483-494
    • /
    • 2001
  • Most of hypertext retrieval models consider documents as independent entities. They ignore relationships between documents of link semantics. in an information retrieval system for hypertext documents, retrieval effectiveness can be improved when ling information is used. Previous link-based hypertext retrieval models ignore link information while indexing. They utilize link information to re-rank the retrieval results. Therefore they are limited that only the documents is result-set utilize link information. This paper utilizes link information when indexing. We present how to use term weighting and inLinks weighting for ranking the relevant documents. Experimental results show that recall and precision evaluation according to the link semantics and the comparison with previously link_based hypertext retrieval model.

  • PDF