• Title/Summary/Keyword: Division

Search Result 78,643, Processing Time 0.077 seconds

Flowering time genes of Brassica

  • Kwon, Soo-Jin;Kim, Hyoung-Seok;Kim, Jung-Sun;Lee, Myung-Chul;Lim, Ki-Byung;Lee, Soo-In;Kim, Jin-A.;Jin, Yong-Moon;Kim, Dong-Hern;Kim, Ho-Il;Park, Beom-Seok
    • Proceedings of the Korean Society of Plant Biotechnology Conference
    • /
    • 2003.10a
    • /
    • pp.101-101
    • /
    • 2003
  • PDF

Brassinosteroids Accelerate the Rate of Cell Division in Isolated Petal Protoplasts of Petunia hybrida

  • Oh, Man-Ho
    • Journal of Plant Biotechnology
    • /
    • v.5 no.1
    • /
    • pp.69-77
    • /
    • 2003
  • Brassinosteroids are known to promote cell elongation in a wide range of plant species but their effect on cell division has not been extensively studied. The effect of brassinolide on the kinetics and final division frequencies of regenerating petal protoplasts of Petunia hybrida Vilm v. Comanche was examined. Under optimal auxin and cytokinin conditions, 10-100 nM brassinolide not only reduced the time of first cell division by 4.5 days but also altered the final division frequencies after 10 days of culture. One micromolar brassinolide showed the same acceleration of first cell division but inhibited the final division frequency by approximately 9%. Under sub-optimal auxin conditions, 10-100 nM brassinolide accelerated the first cell division, but no significant increase in the 8-10 days final division frequencies. Isolated protoplasts may provide a useful model system for the investigation of the molecular mechanisms of brassinosteroid action on cell division and proliferation in higher plants.

Brassinosteroids Accelerate the Rate of Cell Division in Isolated Petal Protoplasts of Petunia hybrida

  • Oh, Man-Ho
    • Journal of Plant Biotechnology
    • /
    • v.5 no.1
    • /
    • pp.63-67
    • /
    • 2003
  • Brassinosteroids are known to promote cell elongation in a wide range of plant species but their effect on cell division has not been extensively studied. The effect of brassinolide on the kinetics and final division frequencies of regenerating petal protoplasts of Petunia hybrida Vilm v. Comanche was examined. Under optimal auxin and cytokinin conditions, 10-100 nM brassinolide not only reduced the time of first cell division by 4.5 days but also altered the final division frequencies after 10 days of culture. One micromolar brassinolide showed the same acceleration of first cell division but inhibited the final division frequency by approximately 9%. Under sub-optimal auxin conditions, 10-100 nM brassinolide accelerated the first cell division, but no significant increase in the 8-10 days final division frequencies. Isolated protoplasts may provide a useful model system for the investigation of the molecular mechanisms of brassinosteroid action on cell division and proliferation in higher plants.

Protein Tyrosine Phosphatase 1B Inhibitors: Heterocyclic Carboxylic Acids

  • Cho, Sung-Yun;Ahn, Jin-Hee;Ha, Jae-Du;Kang, Seung-Kyu;Baek, Ji-Yoen;Han, Sang-Sub;Shin, Eun-Young;Kim, Sung-Soo;Kim, Kwang-Rok;Cheon, Hyae-Gyeong;Choi, Joong-Kwon
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.10
    • /
    • pp.1455-1464
    • /
    • 2003
  • Several series of compounds (benzoic acids, pyrazolecarboxylic acids, phenoxyacetic acids, and quinolinoxyacetic acids) were prepared and evaluated for their inhibitory activity against PTP-1B. Several compounds showed submicromolar inhibitory activity.

Physiological Parameters in Cynomolgus Monkey

  • Kim, Choong-Yong;Han, Su-Cheol;Heo, Jeong-Doo;Tarumoto, Yasuo;Lee, Hyun-Sook;Ha, Chang-Su;Kwon, Myung-Sang;Chung, Moon-Koo
    • Proceedings of the Korea Environmental Mutagen Society Conference
    • /
    • 2003.10a
    • /
    • pp.148-148
    • /
    • 2003
  • PDF