• Title/Summary/Keyword: Diversion Flow

Search Result 73, Processing Time 0.027 seconds

'Design and Construction of 7 kilometres of 2.5 cubic metre per second Canal'

  • Euinton, Gordon;Tate, Don
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.1-8
    • /
    • 2008
  • The paper describes the process and issues encountered during the design and construction of seven kilometres of canal to convey 2.5 cumecs of flow to two power stations. The location of the scheme above the primary reservoir of the Waipori Hydropower scheme in Otago, New Zealand, utilising an existing stream diversion into this reservoir, means that no new water abstraction or diversion consents were required. This mini hydro development associated with the existing Waipori scheme was partly justified by an allocation of carbon credits. The scheme controls are slightly more complicated than many canal and penstock schemes as the canal lengths are considerable in relation to the gradient.

  • PDF

A study on the development of a corridos control model in the framework of the ITS (도로지능화를 위한 교통축제어모형 개발에 관한 연구)

  • Kim, Dong-Sun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.5 no.2 s.10
    • /
    • pp.29-43
    • /
    • 1997
  • An integrated optimal control modelhas been formulated to address dynamic freeway diversion control process. The purpose of this paper is to develop an effective and efficient approach for simultaneous]v solving optimal control measures, including on-ramp metering rates, off-ramp diversion rates, and g/C ratios for traffic signals, on a real-time basis. By approximating the flow-density relation with a two-segment linear function, the non-linear optimal control problem can be simplified into a set of piece-wised linear programming models and solved with the proposed SLP algorithm. consequently, an effective on-line feedback method has been developed for integrated freeway corridor control in the framework of the ITS

  • PDF

How effective has the Wairau River erodible embankment been in removing sediment from the Lower Wairau River?

  • Kyle, Christensen
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.237-237
    • /
    • 2015
  • The district of Marlborough has had more than its share of river management projects over the past 150 years, each one uniquely affecting the geomorphology and flood hazard of the Wairau Plains. A major early project was to block the Opawa distributary channel at Conders Bend. The Opawa distributary channel took a third and more of Wairau River floodwaters and was a major increasing threat to Blenheim. The blocking of the Opawa required the Wairau and Lower Wairau rivers to carry greater flood flows more often. Consequently the Lower Wairau River was breaking out of its stopbanks approximately every seven years. The idea of diverting flood waters at Tuamarina by providing a direct diversion to the sea through the beach ridges was conceptualised back around the 1920s however, limits on resources and machinery meant the mission of excavating this diversion didn't become feasible until the 1960s. In 1964 a 10 m wide pilot channel was cut from the sea to Tuamarina with an initial capacity of $700m^3/s$. It was expected that floods would eventually scour this 'Wairau Diversion' to its design channel width of 150 m. This did take many more years than initially thought but after approximately 50 years with a little mechanical assistance the Wairau Diversion reached an adequate capacity. Using the power of the river to erode the channel out to its design width and depth was a brilliant idea that saved many thousands of dollars in construction costs and it is somewhat ironic that it is that very same concept that is now being used to deal with the aggradation problem that the Wairau Diversion has caused. The introduction of the Wairau Diversion did provide some flood relief to the lower reaches of the river but unfortunately as the Diversion channel was eroding and enlarging the Lower Wairau River was aggrading and reducing in capacity due to its inability to pass its sediment load with reduced flood flows. It is estimated that approximately $2,000,000m^3$ of sediment was deposited on the bed of the Lower Wairau River in the time between the Diversion's introduction in 1964 and 2010, raising the Lower Wairau's bed upwards of 1.5m in some locations. A numerical morphological model (MIKE-11 ST) was used to assess a number of options which led to the decision and resource consent to construct an erodible (fuse plug) bank at the head of the Wairau Diversion to divert more frequent scouring-flows ($+400m^3/s$)down the Lower Wairau River. Full control gates were ruled out on the grounds of expense. The initial construction of the erodible bank followed in late 2009 with the bank's level at the fuse location set to overtop and begin washing out at a combined Wairau flow of $1,400m^3/s$ which avoids berm flooding in the Lower Wairau. In the three years since the erodible bank was first constructed the Wairau River has sustained 14 events with recorded flows at Tuamarina above $1,000m^3/s$ and three of events in excess of $2,500m^3/s$. These freshes and floods have resulted in washout and rebuild of the erodible bank eight times with a combined rebuild expenditure of $80,000. Marlborough District Council's Rivers & Drainage Department maintains a regular monitoring program for the bed of the Lower Wairau River, which consists of recurrently surveying a series of standard cross sections and estimating the mean bed level (MBL) at each section as well as an overall MBL change over time. A survey was carried out just prior to the installation of the erodible bank and another survey was carried out earlier this year. The results from this latest survey show for the first time since construction of the Wairau Diversion the Lower Wairau River is enlarging. It is estimated that the entire bed of the Lower Wairau has eroded down by an overall average of 60 mm since the introduction of the erodible bank which equates to a total volume of $260,000m^3$. At a cost of $$0.30/m^3$ this represents excellent value compared to mechanical dredging which would likely be in excess of $$10/m^3$. This confirms that the idea of using the river to enlarge the channel is again working for the Wairau River system and that in time nature's "excavator" will provide a channel capacity that will continue to meet design requirements.

  • PDF

Development of the Hydraulic Inspection Method for Irrigation Pipeline Systems (관수로 시스템 수리진단 기법 개발)

  • Kim, Young-Hwa;Park, Ji-Sung;Cheong, Byong-Ho
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.251-254
    • /
    • 2003
  • For improving the flow capacity of pipeline system the hydraulic inspection method was developed conducting on-site with survey of pipeline facility such as diversion work, air vent, etc. and pipe network analysis. The pipe network analysis method determine pipe diameter with trial and error. The validity of the hydraulic inspection method proved adapting on S-district pipeline system.

  • PDF

Estimation of water quality for Geumgang Reservoir by diversion of the Geumgang river flow to the Saemangeum reservoir (금강호물의 새만금호 도입에 따른 금강호 수질변화 분석)

  • Eom, Myung-Chul;Jo, Guk-Hyun;Lim, Jong-Wan;Kim, Tae-Chul
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.509-514
    • /
    • 2005
  • Geumgang canal is planned to connect Geumgang lake with Saemangeum reservoir to accelerate desalinization and dillute polluted water in Saemangeum reservoir. The purpose of this study is to evaluate the variations of water quality by divesion of Geumgang lake flow to the Saemangeum reservoir. WASP5 model was used to estimate water quality concentration of Geumgang lake. Model calibration and verification was done for water quality data for 2001 and 2002. As a result of simulating water quality concentration for 4 scenarios, which was considered whether Geumgang canal will be built, there was little influence on water quality in Geumgang lake though Geumgang lake flow diverted to Saemangeum reservoir.

  • PDF

Treatment of a posterior cerebral artery aneurysm in the context of complex cardio-cerebrovascular variations using the Tubridge flow diverter

  • Adam A. Dmytriw;Sahibjot Grewal;Nicole M. Cancelliere;Aman B. Patel;Vitor Mendes Pereira;Xiaolu Ren
    • Journal of Cerebrovascular and Endovascular Neurosurgery
    • /
    • v.26 no.1
    • /
    • pp.65-70
    • /
    • 2024
  • We present a case of intracranial aneurysm located in the P1 segment of left posterior cerebral artery in the context of tetralogy of Fallot. Complex variations included right aortic arch with abnormal branching. Also, the bilateral vertebral arteries were absent, with a type I persistent proatlantal intersegmental artery of the left side. The aneurysm was treated with endovascular intervention with a Tubridge flow diverter and was noted to be completely cured on 6-month follow-up. We discuss the many considerations in this patient including developmental and modern-era treatment.

Numerical simulation of jet flow impinging on a shielded Hartmann whistle

  • Michael, Edin;Narayanan, S.;Jaleel. H, Abdul
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.2
    • /
    • pp.123-136
    • /
    • 2015
  • The present study numerically investigates the effect of shield on the flow characteristics of Hartmann whistle. The flow characteristics of un-shielded Hartmann whistle are compared with whistles of different shield heights 15 mm, 17 mm, 20 mm, 25 mm and 30 mm. The comparison of Mach number contours and transient velocity vectors of shielded Hartmann whistles with un-shielded ones for the same conditions reveal that the presence of shield causes the exiting jet to stick to the wall of the shield without causing spill-over around the cavity inlet, thus sustaining the shock oscillation as seen in the unshielded Hartmann whistle, which has intense flow/shock oscillation and spill-over around the cavity mouth. The velocity vectors indicate jet regurgitance in shielded whistles showing inflow and outflow phases like un-shielded ones with different regurgitant phases. The sinusoidal variation of mass flow rate at the cavity inlet in un-shielded Hartmann whistle indicates jet regurgitance as the primary operating mode with large flow diversion around the cavity mouth whereas the non-sinusoidal behavior in shielded ones represent that the jet regurgitance is not the dominant operating mode. Thus, this paper sufficiently demonstrates the effect of shield in modifying the flow/shock oscillations in the vicinity of the cavity mouth.

Monthly Water Balance Analysis of Hwanggang Dam Reservoir for Imjin river in Border Area using Optical Satellite (광학위성을 활용한 임진강 접경지역 황강댐 저수지의 월단위 물수지 분석)

  • KIM, Jin-Gyeom;KANG, Boo-Sik;YU, Wan-Sik;HWANG, Eui-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.24 no.4
    • /
    • pp.194-208
    • /
    • 2021
  • The Hwanggang Dam in North Korea is located upstream of the Imjin River which is a shared river in the border area. It is known to have a reservoir capacity of 350 million cubic meters and releases a discharge primarily for generating hydroelectric power and partly for transferring to the Yesung River basin. Due to the supply of water from the Hwanggang Dam to another basin, the flow of the Imjin River has decreased, which has a negative impact on the water supply, river maintenance flow, water quality, and ecological environment in Korea. However, due to the special national security issue of the South and North Korea border region, the hydrological data is not shared, and the operation method of the Hwanggang Dam is unknown, so there is a risk of damage to the southern part of the downstream area. In this study, the monthly diversion as the long-term runoff concept was derived through the calibrated hydrological model based on optical remotely sensed Images and water balance analysis. As a result of the water balance analysis from January 2019 to September 2021, the average diversion of the Hwanggang Dam was 29.2m3/s, which is equivalent to 922 million tons per year and 45.6% of the annual inflow of 2.02 million tons into the Hwanggang Dam.

MOSIM NETWORK FLOW MODELING FOR IMPROVING CRITICAL HABITAT IN PLATTE RIVER BASIN (플랫강 유역의 위험에 처한 서식지 보호를 위한 MODSIM 하천 네트워크 흐름모의)

  • Lee, Jin-Hee;Kim, Kil-Ho;Shim, Myung-Pil
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.2039-2043
    • /
    • 2007
  • Like other major river basin systems in the West of the United States the Platte River Basin are faced with the challenges of allocating more water for plant and animal species. A part of the Central Platte River was designated as critical habitat for the whooping crane in 1978. The water allocation system in the Platte River Basin is dominated by the Prior Appropriation Doctrine, which allocates water according to the priorities based on the date of water use. The Platte River Basin segregated into five subregions for purpose of analysis. 24 years of historic records of monthly flow and all the demands were complied. The simulation of river basin modeling includes physical operation of the system including water allocation by water rights and interstate compact agreements, reservoir operations, and diversion with consumptive use and return flow. MODSIM, a generalized river basin network model, was used for estimating the timing and magnitude of impacts on river flows and diversions associated with water transfers from each region. A total of 20 alternatives were considered, covering transfers from each of the five regions of basin with several options. The result shows that the timing and availability of augmented water at the critical habitat is not only a function of use by junior appropriators, but also of river losses, and timing of return flows.

  • PDF

A Study on the Performance Prediction Methodology of Small Hydropower Plant (소수력발전소의 성능예측 기법에 관한 연구)

  • Park, Wan-Soon;Lee, Chul-Hyung;Jeong, Sang-Man
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.894-898
    • /
    • 2006
  • A model, which can analyze the hydrological performance for small hydropower(SHP) plants having no flow duration characteristics has been studied and developed. System performance of existing SHP plant under operating was analyzed by using the developed model. The annual operational rate of SHP plant showed that the data were in good agreement with predicted results from the model. Based on these results, several SHP sites to be exploited were selected and the performance characteristics were analyzed by using the developed model. Also, primary design values such as design flow rate, plant capacity, and operational rate were suggested. As a result, it was found that the methodology used in this study is useful tool to predict the hydrological system performances of SHP sites.

  • PDF