• Title/Summary/Keyword: Diurnal Temperature Range Stress

Search Result 2, Processing Time 0.017 seconds

Effects of gamma aminobutyric acid on performance, blood cell of broiler subjected to multi-stress environments

  • Keun-tae, Park;Mihyang, Oh;Younghye, Joo;Jong-Kwon, Han
    • Animal Bioscience
    • /
    • v.36 no.2
    • /
    • pp.248-255
    • /
    • 2023
  • Objective: Stress factors such as high temperatures, overcrowding, and diurnal temperature range exert profound negative effects on weight gain and productivity of broiler chickens. The potential of gamma aminobutyric acid (GABA) as an excitatory neurotransmitter was evaluated under various stress conditions in this study. Methods: The experiment was conducted under four different environmental conditions: normal, high temperature, overcrowded, and in an overcrowded-diurnal temperature range. The experimental groups were divided into (-) control group without stress, (+) control group with stress, and G50 group (GABA 50 mg/kg) with stress. Weight gain, feed intake, and feed conversion ratio were measured, and stress reduction was evaluated through hematologic analysis. Results: The effects of GABA on broilers in four experimental treatments were evaluated. GABA treated responded to environmental stress and improved productivity in all the experimental treatments. The magnitude of stress observed was highest at high temperature, followed by the overcrowded environment, and was least for the overcrowded-diurnal temperature range. Conclusion: Various stress factors in livestock rearing environment can reduce productivity and increase disease incidence and mortality rate. To address these challenges, GABA, an inhibitory neurotransmitter, was shown to reduce stress caused due to various environmental conditions and improve productivity.

Effectiveness of Controling Micro Climate by the Pine (Pinus Densiflora) Forests of the Temple in Southeast Area of Korea (영남권 사찰림일대 소나무장령림의 미기후 조절 효과 연구)

  • Hong, Suk-Hwan;An, Mi-Yeon;Kang, Rae-Yeol;Choi, Song-Hyun
    • Korean Journal of Environment and Ecology
    • /
    • v.34 no.4
    • /
    • pp.294-303
    • /
    • 2020
  • This study aimed to examine was conducted to the ability of microclimate control in old pine forests by surveying pine forest in Buddhist temples, where the pine forest are stably growing through active protection in the Gyeongnam region, and comparing variation characteristics of microclimate characteristics (temperature and humidity) and distribution of vegetation type. The study sites were pine forests protected well by Buddhist temples (Haein-sa, Beomeo-sa, Tongdo-sa, and Bulguk-sa) in the southeast region of Korea and thus known for stably growing young pine trees. According to the vegetation distribution status analysis, these pine forests did not have a high ratio of pine trees. Except for Tongdo-sa, the ratio of deciduous forest and mixed (deciduous and pine trees) forest had a much larger presence than that of pine forest. Measured data of microclimate showed that the Tongdo-sa area had significantly different characteristics compared to the other three areas. Tongdo-sa area showed a significantly higher diurnal range of temperatures and humidity than the other three areas, in both spring and summer. It is due to the difference in vegetation management. The forests around Tongdo-sa are mostly pine forests, except for the developed areas, while those in the other three areas have a dominant ratio of deciduous brad-leaved forests. Intensive control of pine forest is not effective in mitigating microclimate, i.e., temperature and air humidity. Stress caused by rising temperatures and decreasing air humidity is blamed for the decline of pine forests. Thus, the current active management of pine forests, such as the Tongdo-sa case, has been found to have a greater negative impact on the temperature and humidity stress. Therefore, we believe that a new change in forest management is necessary to increase the effect of mitigating the microclimate of pine forests.