• Title/Summary/Keyword: Disturbance observer(DOB)

Search Result 81, Processing Time 0.02 seconds

Disturbance observer based adaptive sliding mode control for power tracking of PWRs

  • Hui, Jiuwu;Yuan, Jingqi
    • Nuclear Engineering and Technology
    • /
    • v.52 no.11
    • /
    • pp.2522-2534
    • /
    • 2020
  • It is well known that the model of nuclear reactors features natural nonlinearity, and variable parameters during power tracking operation. In this paper, a disturbance observer-based adaptive sliding mode control (DOB-ASMC) strategy is proposed for power tracking of the pressurized-water reactor (PWR) in the presence of lumped disturbances. The nuclear reactor model is firstly established based on point-reactor kinetics equations with six delayed neutron groups. Then, a new sliding mode disturbance observer is designed to estimate the lumped disturbance, and its stability is discussed. On the basis of the developed DOB, an adaptive sliding mode control scheme is proposed, which is a combination of backstepping technique and integral sliding mode control approach. In addition, an adaptive law is introduced to enhance the robustness of a PWR with disturbances. The asymptotic stability of the overall control system is verified by Lyapunov stability theory. Simulation results are provided to demonstrate that the proposed DOB-ASMC strategy has better power tracking performance than conventional sliding mode controller and PID control method as well as conventional backstepping controller.

An Experimental Study on Realtime Estimation of a Nominal Model for a Disturbance Observer: Recursive Least Squares Approach (실시간 공칭 모델 추정 외란관측기에 관한 실험 연구: 재귀최소자승법)

  • Lee, Sang-Deok;Jung, Seul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.8
    • /
    • pp.650-655
    • /
    • 2016
  • In this paper, a novel RLS-based DOB (Recursive Least Squares Disturbance Observer) scheme is proposed to improve the performance of DOB for nominal model identification. A nominal model can be generally assumed to be a second order system in the form of a proper transfer function of an ARMA (Autoregressive Moving Average) model. The RLS algorithm for the model identification is proposed in association with DOB. Experimental studies of the balancing control of a one-wheel robot are conducted to demonstrate the feasibility of the proposed method. The performances between the conventional DOB scheme and the proposed scheme are compared.

Design of a Disturbance Observer Using a Second-Order System Plus Dead Time Modeling Technique (시간 지연을 갖는 2차 시스템 모델링 기법을 이용한 외란 관측기 설계)

  • Jeong, Goo-Jong;Son, Young-Ik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.1
    • /
    • pp.187-192
    • /
    • 2009
  • This paper presents a method for designing a robust controller that alleviates disturbance effects and compensates performance degradation owing to the time-delay. Disturbance observer(DOB) approach as a tool of robust control has been widely employed in industry. However, since the Pade approximation of time-delay makes the plant non-minimum phase, the classical DOB cannot be applied directly to the system with time-delay. By using a new DOB structure for non-minimum phase systems together with the Smith Predictor, we propose a new controller for reducing the both effects of disturbance and time-delay. Moreover, the closed-loop system can be made robust against uncertain time-delay with the help of a Pill controller tuning method that is based on a second-order plus dead time modeling technique.

Integrated Design of Servomechanisms Using a Disturbance Observer (외란관측기를 이용한 서로계의 통합설계)

  • Kim Min-Seok;Chung Sung-Chong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.4 s.235
    • /
    • pp.591-599
    • /
    • 2005
  • This paper proposes a systematic design methodology for high-speed/high-precision servomechanisms by using a disturbance observer. A multiplicative uncertainty model and a two degree-of-freedom controller composed of a disturbance observer (DOB) and a PD controller are considered as subsystems. Analysis of the system performance, such as internal stability and bandwidth of a servomechanism according to subsystem parameters is conducted for better understanding of the dynamic behavior and interactions among the subsystem parameters. Then, an integrated design methodology, where the interactions are considered simultaneously, is applied to design processes of the servomechanism. The tradeoff relationship between disturbance suppression and measurement noise rejection of the DOB is considered through the design process. Numerical case studies show the improved possibility to evaluate and optimize the dynamic motion performance of the servomechanism. Moreover, the disturbance observer designed based on the proposed design methodology yields excellent disturbance suppression performance.

Design of Disturbance Observer for Track-following Controller of Optical Disk Drive

  • Ryoo, Jung-Rae;Doh, Tae-Yong;Chung, Myung-Jin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.87.4-87
    • /
    • 2001
  • In this paper, a design guideline of disturbance observer(DOB) for track-following controller is presented. In the track-following control system(TFCS) of optical disk drive(ODD), disturbance rejection is the key issue for the overall performance. DOB gives an excellent advantage of disturbance rejection within its bandwidth determined by a low-pass filter. In general, design of DOB requires a tradeoff between performance and stability, which should be based on quantitative analysis. The external disturbance is well-defined in the frequency domain, which provides the base of the analysis. In addition to a DOB, a proper feedback controller is utilized for guaranteeing overall stability. Some computer simulations and experiments are conducted and some of the results are presented.

  • PDF

Design of Disturbance Observer Considering Robustness and Control Performance (1) : Analysis on Second Order System (강인성과 제어 성능을 고려한 외란 관측기의 설계 (1) : 2차 시스템에 대한 이론적 해석)

  • Park, Youngjin;Yang, Gwang-Jin;Chunng, Wan-Kyun;Kim, Hong-Rok;Suh, Il-Hong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.8
    • /
    • pp.655-664
    • /
    • 2002
  • The disturbance observer (DOB) has been widely utilized for high precision/speed motion control applications. However, it still lacks the analysis for the robustness and performance brought by using DOB. This paper proposes the robustness measure of DOB and reveals the relationships between the disturbance rejection performance and the order/time constant of a Q filter in DOB. Additionally, we propose six guidelines for the design of Q filter and show their validity through the experiments for DVD systems.

On the Robustness of Disturbance Observer based Controller for DC Motor with Unstructured Uncertainty (비구조적 불확실성이 존재하는 DC모터에 대한 외란관측기 기반 제어기의 강인성에 대한 연구)

  • Jo, Nam-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.1
    • /
    • pp.66-71
    • /
    • 2017
  • In this paper, we study the robustness of disturbance observer based controller for DC motor in the presence of unmodeled dynamics. It is well known that the robustness property usually becomes weaker as the control gain becomes larger. On the contrary to this expectation, it is shown that the phase margin of DOB controller remains quite a large value even though the time constant of Q-filter becomes smaller. The computer simulation results show that DOB controller is able to stabilize the motor system even in the presence of unmodeled dynamics. On the contrary, the unity-feedback system fails to maintain stability when a high gain feedback is employed for the purpose of achieving better disturbance attenuation performance.

Disturbance Observer Design for a High Speed Optical Disk Drive (고배속 광디스크 적용을 위한 외란 관측기 설계)

  • 이주상;최진영;박노철;양현석;박영필
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.1170-1175
    • /
    • 2003
  • Recently, the disturbance caused by an optical disk vibration and the external vibration/shock are more serious problem in an optical disk drives (ODD) as an ODD become small size and rotation speed increases. The conventional controller cannot cope with the mentioned problems properly when the disturbance and vibration are larger than some range. Therefore, we propose a new control scheme using a disturbance observer (DOB) and it can control the aforementioned problems. The designed the controller is applied to a commercial ODD in focusing direction, then its validity is proved by experimental method. By rising the disturbance observer theory, the focusing performance is conspicuously improved in the presence of sinusoidal vibrations or a shock disturbance. This algorithm also applies to a tracking structure also, because focusing structure is very similar to it.

  • PDF

Asymptotic Disturbance Rejection using a Disturbance Observer in the Track-Following Control System of a High-Speed Optical Disk Drive (고배속 광디스크 드라이브 트랙 추종 제어 시스템에서의 외란 관측기를 이용한 점근적 외란 제거)

  • 유정래;문정호;진경복;정명진
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.5
    • /
    • pp.402-410
    • /
    • 2004
  • To obtain a good tracking performance in an optical disk drive servo system, it is essential to attenuate periodic disturbances caused by eccentric rotation of the disk. As an effective control scheme for enhancing disturbance attenuation performance, disturbance observers (DOBs) have been successfully applied to the track-following servo system of optical disk drives. In disk drive systems, the improvement of data transfer rate has been achieved mainly by the increase of disk rotational speed, which leads to the increase of the disturbance frequency. Conventional DOBs are no longer effective in disk drive systems with a high-speed rotation mechanism because the performance of conventional DOBs is severely degraded as the disk rotational frequency increases. This paper proposes a new DOB structure for effective rejection of the disturbance in optical disk drives with a very high rotation speed. Asymptotic disturbance rejection is achieved by adopting a band-pass filter in the DOB structure, which is tuned based on the information on the disturbance frequency. In addition, performance sensitivity of the proposed DOB to changes in disk rotational frequency is analyzed. The effectiveness of the proposed DOB is verified through simulations and experiments using a DVD-ROM drive.

Robust Impedance Control of High-DOF Robot Based on Disturbance Observer Considering Residual Disturbance (잔여외란을 고려한 외란관측기 기반 고자유도 로봇의 강인 임피던스제어)

  • Kim, Junhyuk;Park, Seungkyu;Yoon, Taesung
    • The Journal of Korea Robotics Society
    • /
    • v.16 no.1
    • /
    • pp.72-78
    • /
    • 2021
  • This paper presents a robust impedance control of high-DOF robot based on disturbance observer(DOB). A novel DOB is derived by considering the residual disturbance caused by the difference between actual disturbance and disturbance decoupling input which utilizes the estimated disturbance. It focuses on the elimination of the residual disturbance and improvement of the control performance as well as the good estimation of disturbances. In the control of high-DOF robot, numerical dynamic model, which is conducted by a software based on dynamics, is utilized because the analytical model of high-DOF robot is difficult to be obtained. The simulation of high-DOF robot with numerical dynamic model is provided to verify the performance of the proposed controller.