• Title/Summary/Keyword: Disturbance Force Observer

Search Result 81, Processing Time 0.028 seconds

A Single DOF Magnetic Levitation System using Time Delay Control and Reduced-Order Observer

  • Park, Jung-Soo;Baek, Yoon-Su
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.12
    • /
    • pp.1643-1651
    • /
    • 2002
  • Magnetic levitation systems are required to have a large operating range in many applications. As one method to solve this problem, Time Delay Control (TDC) is applied to a single-axis magnetic levitation system in this paper A reduced-order observer is utilized to estimate states excluding measurable states in the control law. The system consists of a square air-core solenoid and a circular permanent magnet attached on a plastic ball. Theoretical magnetic forces of the system are obtained on the basis of the location of the magnet around the solenoid. The magnetic levitation force is obtained by the experiment, and then compared with the theoretical one. As the results of the control experiments, the nonlinear controller (TDC : 1-2 ㎜) has a larger operating range than the linear controller (PD control : 1-1.4 ㎜), and is superior to linear. control in the robustness to the modeling uncertainty and the performance of the disturbance rejection.

Speed Control of the BLDC Motor using the Disturbance Observer (외란 관측기를 이용한 BLDC 전동기의 속도제어)

  • Jeon, Yong-Ho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.10
    • /
    • pp.955-962
    • /
    • 2016
  • In this paper, we propose a design method for speed controller, current control of a Brushless Direct Current(: BLDC) motor using disturbance rejection techniques. Disturbance assumes a back electromotive force occurring in the electrical system and the variation of the load acting on the rotary shaft from the outside of the motor. And it assumed to be constant during the time interval and the Luenberger's observer design. So that the error of the observer about the system status can converge to zero show how to set the appropriate gain. Further, to stabilize the whole system, and proposes a method for setting the appropriate PI gain control to improve the tracking performance. By applying the proposed controller to 120W BLDC motors were tested for the ability to follow the velocity and current reference. Since the simulation results of the steady state error is within 0.1%, we were able to show the usefulness of the tracking performance of the proposed controller.

Simultaneous Trajectory Tracking Control of Position and Force with Pneumatic Cylinder Driving Apparatus

  • Jang Ji Seong
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.1107-1115
    • /
    • 2005
  • In this study, a position and force simultaneous trajectory tracking control algorithm is proposed for a driving apparatus that consists of two pneumatic cylinders connected in series. The controller applied to the driving apparatus is composed of a non-interaction controller to compensate for interaction between cylinders and a disturbance observer aimed to reduce the effect of model discrepancy that cannot be compensated by the non-interaction controller. The effectiveness of the proposed control algorithm is proved by experimental results.

Power Quality Improvement for Grid Connected Inverters under Distorted and Unbalanced Grids

  • Kim, Hyun-Sou;Kim, Jung-Su;Kim, Kyeong-Hwa
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1578-1586
    • /
    • 2016
  • A power quality improvement scheme for grid connected inverters, even in the presence of the disturbances in grid voltages due to harmonic distortions and three-phase imbalance, is presented for distributed generation (DG) power systems. The control objective is to force the inverter currents to follow their references with robustness even under external disturbances in grid voltages. The proposed scheme is realized by a disturbance observer (DOB) based current control scheme. Since the uncertainty in a system can be effectively canceled out using an estimated disturbance by the DOB, the resultant system behaves like a closed-loop system consisting of a disturbance-free nominal model. For experimental verification, a 2 kVA laboratory prototype of a grid connected inverter has been built using a digital signal processor (DSP) TMS320F28335. Through comparative simulations and experimental results under grid disturbances such as harmonic distortion and imbalance, the effectiveness of the proposed DOB based current control scheme is demonstrated.

Study on Maximum Adhesive Effort Estimation using Disturbance Observer (외란관측기를 이용한 최대 점착력 추정에 관한 연구)

  • Jun, K.Y.;Lee, S.H.;Oh, B.H.;Kang, S.U.;Lee, H.G.;Kim, Y.J.;Han, K.H.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.1120-1122
    • /
    • 2001
  • In electric motor coaches, the rolling stocks move by the adhesive effort between rail and driving wheel. Generally, the adhesive effort is defined by the function of both the weight of electric motor coach and the adhesive effort between rails and driving wheel. The characteristics of adhesive effort is strongly affected by the conditions between rails and driving wheel. When the adhesive effort decreases suddenly, the electric motor coach has slip phenomena. This paper proposes a re-adhesion control algorithm which uses the maximum adhesive effort by instantaneous estimation of adhesion force using disturbance observer. Based on this estimated adhesive effort, the re-adhesion control is performed to obtain the maximum transfer of the tractive effort.

  • PDF

Hybrid impedance control for free and contact motion

  • Oh, Yonghwan;Chung, W. K.;Youm, Y.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.448-451
    • /
    • 1995
  • A general task execution with hybrid impedance control method is addressed. The target impedance is expressed in the constraint frame. For the computational simplicity and the robustness improvement, disturbance observer scheme is used. To make stable contact with the environment, the large value of desired inertia gain for the force-controlled subspace is suggested. Numerical examples are given to show the performance of the proposed controller.

  • PDF

SPO based Reaction Force Estimation and Force Reflection Bilateral Control of Cylinder for Tele-Dismantling (원격해체 작업을 위한 유압 시스템의 SPO 기반 반력 추정 및 힘 반향 양방향 원격제어)

  • Cha, Keum-Gang;Yoon, Sung Min;Lee, Min Cheol
    • The Journal of Korea Robotics Society
    • /
    • v.12 no.1
    • /
    • pp.1-10
    • /
    • 2017
  • For dismantling heavy structure under special environment in radioactivity, there are many problems which should be tele-operated and feedback a cutting force for cutting a thick structure such as concrete. When operator dismantles a thick heavy concrete structure, it is in sufficient to judge whether robot is contacting or not with environment by using only vision information. To overcome this problem, force feedback and impedance model based bilateral control are introduced. The sliding mode control with sliding perturbation observer (SMCSPO) based bilateral control is applied and surveyed to a single rod hydraulic cylinder in this paper. The sliding mode control is used for robustness against a disturbance. The sliding perturbation observer is used for estimation of a reaction force such as cutting force. The bilateral control is executed using the information of reaction force estimated by SMCSPO. The contribution of this paper is that the estimation method and bilateral control of the single rod hydraulic cylinder are introduced and discussed by experiment.

Toward Transparent Virtual Coupling for Haptic Interaction during Contact Tasks (컨택트 작업 시 햅틱 인터렉션의 투명성 향상을 위한 Virtual Coupling 기법의 설계)

  • Kim, Myungsin;Lee, Dongjun
    • The Journal of Korea Robotics Society
    • /
    • v.8 no.3
    • /
    • pp.186-196
    • /
    • 2013
  • Since its introduction (e.g., [4, 6]), virtual coupling technique has been de facto way to connect a haptic device with a virtual proxy for haptic rendering and control. However, because of the single dependence on spring-damper feedback action, this virtual coupling suffers from the degraded transparency particularly during contact tasks when large device/proxy-forces are involved. In this paper, we propose a novel virtual coupling technique, which, by utilizing passive decomposition, reduces device-proxy position deviation even during the contact tasks while also scaling down (or up) the apparent inertia of the coordinated device-proxy. By doing so, we can significantly improve transparency between multiple degree of freedom (possibly nonlinear) haptic device and virtual proxy. In other to use passive decomposition, disturbance observer of [3] is adopted to estimate human force with some dead-zone modification to avoid "winding-up" force estimation in the presence of device torque saturation. Some preliminary experimental results are also given to illustrate efficacy of the proposed technique.

Posture Stabilization Control of Biped Transformer Robot under Disturbances (이족 트랜스포머 로봇의 외란 대응 자세 안정화 제어)

  • Geun-Tae Kim;Myung-Hun Yeo;Jung-Yup Kim
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.3
    • /
    • pp.241-250
    • /
    • 2023
  • This paper describes the posture stabilization control of a bipedal transformer robot being developed for military use. An inverted pendulum model with a rectangular that considers the robot's inertia is proposed, and a posture stabilization moment that can maintain the body tilt angle is derived by applying disturbance observer and state feedback control. In addition, vertical force and posture stabilization moments that can maintain the body height and balance are derived through QP optimization to obtain the necessary torques and vertical force for each foot. The roll and pitch angles of the IMU sensor attached to the robot's feet are reflected in the ankle joint to enable flexible adaptation to changes in ground inclination. Finally, the effectiveness of the proposed algorithm in posture stabilization is verified by comparing and analyzing the difference in body tilt angle due to disturbances and ground inclination changes with and without algorithm application, using Gazebo dynamic simulation and a down-scale test platform.

Cartesian Space Direct Teaching for Intuitive Teaching of a Sensorless Collaborative Robot (센서리스 협동로봇의 직관적인 교시를 위한 직교공간 직접교시)

  • Ahn, Kuk-Hyun;Song, Jae-Bok
    • The Journal of Korea Robotics Society
    • /
    • v.14 no.4
    • /
    • pp.311-317
    • /
    • 2019
  • Direct teaching is an essential function for collaborative robots for easy use by non-experts. For most robots, direct teaching is implemented only in joint space because the realization of Cartesian space direct teaching, in which the orientation of the end-effector is fixed while teaching, requires a measurement of the end-effector force. Thus, it is limited to the robots that are equipped with an expensive force/torque sensor. This study presents a Cartesian space direct teaching method for torque-controlled collaborative robots without either a force/torque sensor or joint torque sensors. The force exerted to the end-effector is obtained from the external torque which is estimated by the disturbance observer-based approach with the friction model. The friction model and the estimated end-effector force were experimentally verified using the robot equipped with joint torque sensors in order to compare the proposed sensorless approach with the method using torque sensors.