• Title/Summary/Keyword: District cooling

Search Result 192, Processing Time 0.017 seconds

Cretaceous Epithermal Au-Ag Mineralization in the Muju-Yeongam District (Sulcheon Mineralized Area), Republic of Korea (한반도(韓半島) 무주(茂朱)-영암(靈岩)지역 백악기(白堊紀) 천열수(淺熱水) 금(金)-은(銀) 광화작용(鑛化作用) 연구(설천(雪川)지역 광화대(鑛化帶)))

  • So, Chil-Sup;Yun, Seong-Taek;Choi, Sang-Hoon;Kim, Se-Hyun;Kim, Moon-Young
    • Economic and Environmental Geology
    • /
    • v.25 no.2
    • /
    • pp.115-131
    • /
    • 1992
  • Late Cretaceous (90.5 Ma), epithermal gold-silver vein mineralization of the Weolseong and Samchang mines in the Sulcheon area, 60 km southeast of Taejeon, can be separated into two distinct stages (I and II) during which fault-related fissures in Precambrian gneiss and Cretaceous (102 Ma) porphyritic granite were filled. Fluid inclusion and mineralogical data suggest that quartz-sulfide-electrum-argentite-forming stage I evolved from initial high temperatures $({\approx}340^{\circ}C})$ to later lower temperatures $({\approx}140^{\circ}C})$ at shallow depths of about 400 to 700 m. Ore fluid salinities were in the range between 0.2 and 6.6 wt. % eq. NaCl. A simple statistic model for fluid-fluid mixing indicates that the mixing ratio (the volumetric ratio between deep hydrothermal fluids and meteoric water) systematically decreased with time. Gold-silver deposition occurred at temperatures of $230{\pm}40^{\circ}C$ mainly as a result of progressive cooling of ore-forming fluids through mixing with less-evolved meteoric waters. Measured and calculated hydrogen and oxygen isotope values of hydrothermal fluids indicate meteoric water dominance, approaching unexchanged meteoric water values. The geologic, mineralogic, and geochemical data from the Weolseong and Samchang mines are similar to those from other Korean epithermal gold-silver vein deposits.

  • PDF

Eco-friendliness Evaluation of a Low-Noise and Dust-Recovery Type Pavement Cutter (저소음·분진회수형 도로절단기의 친환경성 평가)

  • Kim, Kyoon Tai
    • Ecology and Resilient Infrastructure
    • /
    • v.8 no.4
    • /
    • pp.194-203
    • /
    • 2021
  • With the recent increase in maintenance works on water and sewer pipes as well as district heating supply pipes, pavement cutting work using pavement cutter is on the rise. The pavement cutting operation generates considerable dust (cutting sludge) as well as noise; therefore, it is necessary to apply eco-friendly technologies that have low noise and dust recovery capability. Thus far, various equipment for recovering dust have been developed; however, there is a limitation in that the environmental friendliness is not quantified. Therefore, in this study, we developed a low-noise, dust-recovery type pavement cutter that can fundamentally remove the causes of environmental hazards such as noise and dust and evaluated the eco-friendliness of the pavement cutting process performed by this cutter. To this end, an integrated water cooling-sludge recovery system composed of a vacuum device and a sludge suction unit was developed, and the developed system was applied to a pavement cutter. Subsequently, the developed equipment was applied to the test bed, and data related to its eco-friendliness were collected and evaluated. The results showed that the cutting sludge recovery rate of the developed equipment was greater than 83%, the noise level was approximately 82 - 83 dB, and the sound power level was 115 dB. The results of this study will be used as basic data to develop improved pavement cutters in the future with improved cutting sludge recovery performance and lower noise.