• Title/Summary/Keyword: Distribution systems

Search Result 6,325, Processing Time 0.038 seconds

Evaluation of Interconnection Capacity of SCOGNs to the power Distribution Systems from the Viewpoint of Voltage Regulation (전압조정 측면에서 본 소형 열병합발전 배전계통 도입량 평가)

  • 최준호;김재철
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.9
    • /
    • pp.1096-1102
    • /
    • 1999
  • This paper discusses the evaluation of interconnection capacity of small cogeneration(SCOGN) systems to the power distribution systems from the viewpoint of voltage regulation. Power utilities are required to keep the customers' voltage profile over a feeder close to the rated value under all load conditions. However, it is expected that the interconnection of SCOGNs to the power distribution systems impacts on the existing voltage regulation method and customers' voltage variations. Therefore, SCOGNs should be integrated to the automated power distribution systems to prevent interconnection problems and supply high quality electricity to the customers. For these reasons, we should proceed with the evaluation of interconnection capacity of SCOGNs to the power distribution systems. However, it is generally impossible to perform actual testing on the power distribution systems, and standardized methodologies and guidelines are not developed to evaluate it. The criterion indexes for voltage regulation and variations are presented in order to evaluate the interconnection capacity of SCOGNs to the power distribution systems. In addition, the evaluation methodology of interconnection capacity of SCOGNs for power distribution systems is presented. It is expected that the resulted of this paper are useful for power system planners to determine the interconnection capacity of SCOGNs and dispersed storage and generation (DSG) systems to the power distribution systems.

  • PDF

Design of Physical Distribution Cost Information Systems of Manufacturing Enterprises (제조기업의 물류원가정보시스템의 설계)

  • 김동석
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.18 no.33
    • /
    • pp.161-171
    • /
    • 1995
  • When physical distribution cost can be correctly measured, its management can also be efficient. Thus the primary objective of the study is to develop systems for measuring correctly physical distribution cost. The systems have two aspects : the One is the consumption of the resourses(materials, labor service, the other services), the other is the creation of physical distribution services(transportation, storage, cargo, packing, distribution conversion, management). By measuring the cost through the systems, the commoditization of the physical distribution services is possible and measurement of the cost and revenue can also be reasonable ,which makes its management efficient.

  • PDF

A Study on the Lightning Overvoltage Analysis and Lightning Surge Protection Methods in 22.9kV Underground Distribution Systems (22.9kV 지중계통의 뇌과전압 해석 및 뇌서지 보호방안에 관한 연구)

  • 김상국;정채균;이종범;박왈서
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.8
    • /
    • pp.454-460
    • /
    • 2004
  • The effects of surge arresters for protection of transmission systems against direct lightning strokes have already been reviewed using Electromagnetic Transients Program(EMTP). Distribution lines are spanned in much larger area than transmission lines, and therefore, are more susceptible to lightning strokes. We have modelled the 22.9kV underground distribution cable systems that have arresters and grounding wires. And this paper analyzes the overvoltages on underground distribution cable systems when direct lightning strokes strike on the overhead grounding wire using EMTP. Then we investigated that (1) the effects of lightning stroke according to underground distribution cable length (2) voltages at the riser pole and at the cable terminal according to installation of arrester. This study will provide insulation coordination methods for reasonable systems design in 22.9kV underground distribution cable systems.

Economic Evaluations of Secondary Battery Energy Storage Systems in Power Distribution Systems (전력저장전지시스템의 경제성 평가)

  • No, Dae-Seok;O, Yong-Taek
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.4
    • /
    • pp.152-160
    • /
    • 2000
  • This paper presents an efficient evaluation method on the role of new energy storage systems, especially the secondary Battery Energy Storage (BES) systems, in the case where they are interconnected with the power distribution systems. It is important to perform the economic evaluation for the new energy storage systems in a synthetical and quantitative manner, because they are very costly in the early stage of their development and commercialization. In this paper, the multiple functions of BES systems, which are operated at distribution systems, such as load levelling, effective utilization of power distribution systems and uninterruptible power supply at the emergency conditions are classified and analyzed. And then the quantitative evaluation methods of the multiple functions for BES systems are proposed using the mathematical modelling.

  • PDF

A Study on the Optimal Investment Method for Distribution Systems Interconnected with Dispersed Generations (분산전원이 연계된 배전계통의 최적 설비투자 방안에 관한 연구)

  • Rho, Dae-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.12
    • /
    • pp.2179-2185
    • /
    • 2008
  • This paper deals with the optimal investment method for distribution facilities, based on the analytical approach for the reliability assessment in distribution systems interconnected with new dispersed generations. The existing approach can estimate the expected reliability performance of distribution systems by a direct assessment of the configuration of the systems using the reliability indexes such as NDP(Non-Delivery Power) and NDE(Non-Delivery Energy). The indexes can only consider the number and configuration of the load, but can not consider the characteristics of the load which is the one of the most important factor in the investment cost for the distribution systems. Therefore, this paper presents the new performance indexes for the investment of the distribution facilities considering both the expected interruption cost for the load section and the operation characteristics of dispersed generations. The results from a case study show that the proposed methods can be a practical tool for the voltage management in distribution systems including dispersed sources.

A Study for the Voltage Analysis Method of Distribution Systems with Distributed Generation (분산전원이 도입된 배전계통의 전압해석 방법에 관한 연구)

  • 김태응;김재언
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.2
    • /
    • pp.69-78
    • /
    • 2003
  • This paper presents a voltage analysis method of distribution systems interconnected with DG(Distributed Generation). Nowadays, small scale DG becomes to be introduced into power distribution systems. But in that case, it is difficult to properly maintain the terminal voltage of low voltage customers by using only ULTC(Under Load Tap Changer). This paper presents a voltage analysis method of distribution systems with DC for proper voltage regulation of power distribution systems with ULTC. In order to develop the voltage analysis method, distribution system modeling method and advanced loadflow method are proposed. Proposed method has been applied to a 22.9 kV practical power distribution systems.

Analysis of Effect on the Transient State According to Common Grounding between Underground Transmission Systems and Distribution Systems (지중송전 및 배전계통의 공통접지에 따른 과도상태 영향 분석)

  • Lim, Kwang-Sik;Lee, Jong-Beom
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.740-741
    • /
    • 2007
  • This paper analyses the transient state of underground distribution system against single line to ground fault in underground transmission systems, when underground transmission systems and distribution systems are made of common grounding. Underground transmission systems and distribution systems are modeled by EMTP/ATPDraw. Simulation is carried out considering variation of parameters such as value of common grounding, balance load and unbalance load.

  • PDF

Evaluation Algorithm of Interruption Cost in Distribution Systems Interconnected with Dispersed Storage and Generation Systems (분산형전원이 도입된 배전계통에서의 정전비용산출 알고리즘에 관한 연구)

  • Rho, Dae-Seok;Choi, Jae-Suk;Cha, Jun-Min;Kim, Deok-Young
    • Proceedings of the KIEE Conference
    • /
    • 2000.11a
    • /
    • pp.82-84
    • /
    • 2000
  • This paper deals with a evaluation algorithm of interruption cost in distribution systems in the case where Dispersed Storage and Generation (DSG) systems are interconnected with the distribution systems. If DSG systems are operated as the function of the load levelling in distribution systems at the normal conditions and as the uninterruptible power supply in fault areas at the emergency conditions, the reliability improvement of the distribution systems can be expected. In other words, the benefit can be represented by the cost avoiding interruption according to the operation of DSG systems when a fault is occurred. Therefore, this paper presents the evaluation algorithm for interruption cost in order to evaluate the benefit for the uninterruptible power supply of DSG systems in a quantitative manner.

  • PDF

Bacterial Regrowth in Water Distribution Systems and Its Relationship to the Water Quality: Case Study of Two Distribution Systems in Korea

  • Yoon, Tae-Ho;Lee, Yoon-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.2
    • /
    • pp.262-267
    • /
    • 2004
  • This study was done to observe the occurrence of heterotrophic bacteria in terms of free chlorine residuals in two different water distribution systems, which belongs to both K and Y water treatment plant of S city in Korea. The data analyzed in the distribution systems show that the free chlorine residuals decreased from 0.10 to 0.56 mg/l for K, and 0.51 to 0.78 mg/l for Y. The decay of free chlorine is clearly higher in both March and August than in January. The HPC in the distribution systems are ranged from 0 to 40 cfu/ml for K, 0 to 270 cfu/ml for Y, on $R_2$A medium. In particular, its level is relatively high at the consumer's ground storage tanks, taps, and the point-of-end area of Y. The predominant genera that were studied in the distribution systems were Acinetobacter, Sphingomonas (branch of Pseudomonas), Micrococcus, Bacillus, Staphylococcus. The diversity of heterotrophic bacteria increases in the end-point area. Most of them are either encapsulated cells or of Gram-positve cocci. In conclusion, the point-of-end area in distribution systems shows the longer flow distance from the water treatment plants, along with a greater diversity and a higher level of heterotrophic bacteria, due to the significant decay of free chlorine residuals.

A Study on the Optimal Voltage Regulation in Distribution Systems with Dispersed Generation Systems (분산형전원이 도입된 배전계통의 최적전압조정 방안에 관한 연구)

  • Kim Mi-Young;Oh Yong-Taek;An Jae-Yun;Kim Jae-Eon;Kim Eung_Sang;Rho Dae-Seok
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.5
    • /
    • pp.251-258
    • /
    • 2005
  • Recently, the domestic and foreign power trends are the supply of high quality power and environment conservation technology based on the new energies development. So, the dispersed generation systems, such as photovoltaic, fuel cell, and battery are to be introduced in distribution systems. According to the situation change, power of high Quality and reliability are required in distribution systems with dispersed generation. Up to now, the voltage in distribution systems are regulated by ULTC of substation and pole transformer of primary feeders. These days, Step Voltage Regulator(SVR) is getting established at distribution feeders to regulate effectively voltage of primary ffeders that voltage drop exceeds $5\%$. But, because SVR is operated independently with ULTC of substation, SVR can not take play to its full effectivity. Under these circumstances, in order to deliver suitable voltages to as many customers as possible, new optimal voltage regulation algorithms are required in distribution system. So, this paper presents optimal voltage regulation algorithm to regulate voltage effectively for ULTC and SVR in distribution systems with dispersed generation systems.