• Title/Summary/Keyword: Distribution piping system

Search Result 40, Processing Time 0.03 seconds

Calculation of Probability of System Failure for Pipe Network with Surge Tank regarding Unsteady Flow (Surge Tank가 설치된 상수도관망에서 부정류를 고려한 불능확률 산정)

  • Kwon, Hyuk Jae;Lee, Cheol-Eung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.3
    • /
    • pp.295-303
    • /
    • 2009
  • In the present study, a reliability analysis calculating the probability of system failure has been performed using cut set and results of numerical analysis for unsteady flow in pipe. Especially, the probability of system failure has been evaluated regarding the effect of valve closure which is a really important activity in operation of piping system. In spite of small amount of demand, it was found that fast valve closure can generate high probability of system failure. Furthermore, it was confirmed that surge tank can reduce the unsteady effects and probability of system failure in water distribution system. From the results, it was found that the unsteady flow has a significant effect on the probability of system failure Furthermore, it was able to find which pipe or cut set has high probability of system failure. So it could be used to determine which pipe or cut set has a priority of repair and replacement. Therefore, reliability analysis regarding unsteady flow has to be performed for the planning, designing, maintenance, and operation of piping system.

Stress Distribution in the Dissimilar Metal Butt Weld of Nuclear Reactor Piping due to the Simulation Technique for the Repair Welding (보수용접 모사 방법에 따른 원자로 배관 이종금속 맞대기 용접부 응력 분포)

  • Lee, Hwee-Seung;Huh, Nam-Su;Kim, Jin-Su;Lee, Jin-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.5
    • /
    • pp.649-655
    • /
    • 2013
  • During welding, the dissimilar metal butt welds of nuclear piping are typically subjected to repair welding in order to eliminate defects that are found during post-weld inspection. It has been found that the repair weld can significantly increase the tensile residual stress in the weldment, and therefore, accurate estimation of the weld residual stress due to repair weld, especially for dissimilar metal welds using Ni-based alloy 82/182 in nuclear components, is of great importance in order to assess susceptibility to primary water stress corrosion cracking. In the present study, the stress distributions of dissimilar metal butt welds in nuclear reactor piping subjected to repair weld were investigated based on detailed nonlinear finite element analyses. Particular emphasis was placed on the variation of the stress distribution in the dissimilar metal butt weld according to the finite element welding analysis sequence for the repair welding process.

Evaluation of Corrosion Protection Efficiency and Analysis of Damage Detectability in Buried Pipes of a Nuclear Power Plant with 3D FEM (3D FEM 모델링을 이용한 원전 매설배관의 방식성능 평가 및 결함탐지능 분석)

  • Chang, Hyun Young;Park, Heung Bae;Kim, Ki Tae;Kim, Young Sik;Jang, Yoon Young
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.11 no.2
    • /
    • pp.61-67
    • /
    • 2015
  • 3D FEM modeling based on 3D CAD data has been performed to evaluate the efficiency of CP system in a real operating nuclear power plant. The results of it successfully produced sophisticated profiles of electrolytic potential and current distributions in the soil of an interested area. This technology is expected to be a breakthrough for detection technology of damages on buried pipes when it comes into combining with a brand of area potential earth current (APEC) and ground penetrated radar (GPR) technologies. 2D current distribution and 2D current vectors on the earth surface from the APEC survey will be used as boundary conditions with exact 3D geometry data resulting in visualization of locations and extents of corrosion damages on the buried pipes in nuclear power plants.

A Construction Case of Flow Equal Distribution System in Series Connection (직렬 연결구조의 유량균등분배 시스템 시공사례)

  • Jeong, Ung-Sung;Lee, Sung-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.64-65
    • /
    • 2017
  • The existing hot and cold water supply system have a few problems such as construct ability, damage of the building, maintenance and the unequal distribution of water supply flow. So the system has needs to be improved and the Flow Equal Distribution System(FEDS) in series connection has been innovated by Idin Lab which relieve the existing problems. Thus, the purpose of this study is aimed to show the merits of FEDS with an real example of construction site of Wirye Terrace, D builder. 1. FEDS enables builders to save construction cost as the system in series connection does not need to equip both allotters and loop piping system. 2. FEDS contains a cartridge of water saving function so it mainly reduce the unequal distribution of flow and sudden temperature deviation of hot water supply at the same time. 3. FEDS allows repairer to maintain the water supply system at the same floor that could get rid of disharmony between dwellers who live the upper/lower story of the same building. Therefore, the FEDS will be applied when the building is remodeled and constructed.

  • PDF

Consideration of Pressure-Rise and Water Hammer for Pipe System in Relation to Start-Up and Sudden Stop of the Pump (펌프 기동 및 정지에 따른 배관 압력상승과 수격작용 영향 고찰)

  • Heo, Min Woong;Min, Ji Ho
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.13 no.1
    • /
    • pp.69-74
    • /
    • 2017
  • In the fire protection system or fire fighting water supply system, the jockey pump is generally installed for the prevention of the pressure decrease of pipes, the frequent driving of the fire pump and protection the pipes from the water hammer. In this paper, the pressure-rise in fire fighting water distribution pipes in condition of pipe pressurization by the surge tank at the start-up and the sudden-stop of the fire pump without additional installation of jockey pump is considered by using simple formula calculations and the evaluation of water hammer occurrence in condition of pipe pressurization by the surge tank is included. As a result, the pressure-rise of pipes is less than the pipe design pressure at the condition of pump's start-up and sudden stop, and the possibility of water hammer occurrence is remarkably low due to pressurization of the pipes by the surge tank.

Study of the high pressure hose assemblies by accelerated life test (고압호스 조립체의 가속수명시험에 관한 연구)

  • Lee, Gi Chun;Lee, Yong Bum
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.8
    • /
    • pp.886-892
    • /
    • 2013
  • Hydraulic hose assemblies are used as piping components for construction machinery, automobile, aircraft, industrial machinery, machine tools, and machinery for ships. Then the reliability of hose assemblies is important because total hydraulic system, which used to deliver the fluid power ($P^*Q$) needed to flexibility in the piping system, is not operated if the hose assembly failed in the system. The data of the accelerated life test estimated through the shape parameter(${\beta}$) resulting of the Weibull distribution analysis. This study has tried to reduce the test time resulting from varying impulse pressure range and the flexing diameter. Accelerated life test model for the test results was adopted the GLL(generalized log linear) and the accelerated indexes are identified as 6.64 for the pressure and 4.46 for flexing radius. Also, it found that shape parameter is 6.19, scale parameter(${\eta}$) is $1.035{\times}108$, which were adopted the pressure 35 MPa and the flexing diameter R100 mm in the used condition.

Design of Compressor Loop Pipe Using CAE (CAE에 의한 압축기 배관의 설계)

  • 박성근;조성욱;김형석;임금식
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1993.04a
    • /
    • pp.71-74
    • /
    • 1993
  • The purpose of this paper is that the compressor design engineers reduce a development term with CAE approach. By using CAE, geometries for various type of piping systems can be constructed interactively and the Vibration Characteristics and Stress distribution are analyzed by FEM. Sensitivity and structural modification analysis capability are also used to reduce the total number of prototypes. An example is shown to validate the effectiveness of this system.

  • PDF

Flow Safety Assessment by CFD Analysis in One-Touch Insertion Type Pipe Joint for Refrigerant (CFD 해석을 이용한 냉매용 원터치 삽입식 파이프 조인트의 유동 안전성 평가)

  • Kim, Eun-young;Park, Dong-sam
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.3
    • /
    • pp.550-559
    • /
    • 2022
  • Purpose: Pipes are widely used as applied devices in many industrial fields such as machinery, electronics, electricity, and plants, and are also widely used in safety-related fields such as firefighting and chemistry. With the diversification of products, the importance of technology in the piping field is also increasing. In particular, when changing the existing copper pipe to stainless steel, it is necessary to evaluate safety and flow characteristics through structural analysis or flow analysis. Method: This study investigated the safety by flow analysis of the 6.35 inch socket model, which are integrated insert type connectors developed by a company, using CFD analysis technique. For CDF analysis, RAN model and LES model are used. Result: As results of the analysis, amplitude of the pressure fluctuation acting on the wall of the piping system is formed at a level of 3,780 Pa or less, which is a very small level of pressure compared with the operating pressure or design stress of the refrigerant piping. Conclusion: These results mean that the effect of vibration caused by turbulence on the structural safety of the pipe is negligible.

Study on Waterhammer Analysis (수격작용(워터햄머)의 해석에 관한 연구)

  • 남선우
    • Water for future
    • /
    • v.12 no.2
    • /
    • pp.49-55
    • /
    • 1979
  • The purpose of this study is to develope the computer program to compute the unsteady, transient flow conditions in a hydraulic system. The unstready flow condition may be brought about due to power failure to pump motors, pump start-up or modulation of control valve. The program was written specially for analyzing the water-hammer in the pumping system. The pumping system which can be simulated by the program can contain pipelines, tunnel, surge tanks, branched lines, reservoirs, dead end pipes and valve controls. The use of a computer program to analyze haydranlic transients is of great benifit to the designers of transmission main and distribution systems. Advantages include time savings, the ability to analyze complex piping systems, and increased accuracy. The author outlines a pogram developed for the above system.

  • PDF

Development of Performance Evaluation and Control System of Multi-Air Conditioner (멀티에어컨의 성능평가 및 제어시스템 개발에 대한 연구)

  • Lee H.W.;Ko K.W.;Gwon Yeong-Cheol;Lee J.H.;Lee Y.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1107-1114
    • /
    • 2005
  • The running condition of multi-system air conditioner is prone to vary largely as it is designed for individual conditioning in each space of middle and small sized buildings. This leads to overcooling in case of partial load run, while the lack of capacity happens in case of full load run. Besides these, there exist such problems as instabilities due to the uneven refrigerant distribution caused by fluctuation of load and the change in piping line. Based upon the basic study on the function characteristics found in parts needed for maximized system working design in order to troubleshoot, the system functioning pattern should be identified through the different tests with various operating circumstances and the analysis models should be developed. With this ground, the control logic has to be made to have a control over capacity and make possible the efficient distribution of refrigerant.

  • PDF