• 제목/요약/키워드: Distribution operation

검색결과 2,814건 처리시간 0.032초

Integrating Operation of Dispersed Generation to Automation Distribution Center for Distribution Network Reconfiguration

  • Park, Joon-Ho;Kim, Jae-Chul;Moon, Seung-Il
    • KIEE International Transactions on Power Engineering
    • /
    • 제2A권3호
    • /
    • pp.102-108
    • /
    • 2002
  • Due to the many attractive aspects of DG in the future power distribution system, distribution automation will be a center hub of integration of the distribution system and resources to satisfy the various needs of customers in a competitive and deregulated environment. In this paper, operation strategies are presented which use network reconfiguration of the automated distribution systems with DG as a real-time operation tool for loss reduction and service restoration from the view of distribution operation. The algorithms and operation strategies of an automated distribution system with DG are introduced to achieve the positive effects of DG in distribution systems. A simple case study shows the effectiveness of the proposed operation strategies.

배전계통 운영비용의 최소화에 의한 분산전원의 최적 용량과 위치결정 (Optimal Capacity and Allocation Distributed Generation by Minimization Operation Cost of Distribution System)

  • 배인수;박정훈;김진오;김규호
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제53권9호
    • /
    • pp.481-486
    • /
    • 2004
  • In operation of distribution system, $DG_s$ Distributed Generations) are installed as an alternative of extension and establishment of substations and transmission and distribution lines according to increasing power demand. In operation planning of $DG_s$, determining optimal capacity and allocation gets economical pro(it and improves power reliability. This paper proposes determining a optimal number, size and allocation of $DG_s$ needed to minimize operation cost of distribution system. Capacity of $DG_s$ (or economical operation of distribution system estimated by the load growth and line capacity during operation planning duration, DG allocations are determined to minimize total cost with power buying cost. operation cost of DG, loss cost and outage cost using GA(Genetic Algorithm).

직류 배전 시스템을 위한 전력 변환 모듈의 통합 운전 (Integrated Operation of Power Conversion Module for DC Distribution System)

  • 이희준;신수철;홍석진;원충연
    • 전력전자학회논문지
    • /
    • 제19권3호
    • /
    • pp.240-248
    • /
    • 2014
  • It is DC power that Output of renewable energy being recently developed and researched. Also, demand of DC power will expect to proliferate due to increase of digital load. Thus, DC distribution system providing high quality of power and reliability has emerged as a new distribution system. If the conventional distribution systems are substituted by proposed DC distribution system, the output of renewable energy can be connected with distribution systems under minimum power conversion. Therefore, in the event of connection with DC load, it can construct an efficient distribution system. In this paper, the integrated parallel operation of power conversion module for DC distribution system is proposed. Also, this paper proposed modularization of power conversion devices for DC distribution system and power control for parallel operation of large capacity system. DC distribution system consists of three power conversion modules such as AC/DC power conversion module 2 set, ESS module 1 set. DC distribution system controls suitable operation depending on the status of the DC power distribution system and load. Integrated operation of these systems is verified by simulation and experiment results.

Optimal Capacity and Allocation of Distributed Generation by Minimum Operation Cost in Distribution Systems

  • Shim Hun;Park Jung-Hoon;Bae In-Su;Kim Jin-O
    • KIEE International Transactions on Power Engineering
    • /
    • 제5A권1호
    • /
    • pp.9-15
    • /
    • 2005
  • In the operation of distribution systems, DGs (Distributed Generations) are installed as an alternative to extension and the establishment of substations, transmission and distribution lines according to the increasing power demand. In the operation planning of DGs, determining optimal capacity and allocation achieves economical profitability and improves the reliability of power distribution systems. This paper proposes a determining method for the optimal number, size and allocation of DGs in order to minimize the operation costs of distribution systems. Capacity and allocation of DGs for economical operation planning duration are determined to minimize total cost composed with power buying cost, operation cost of DGs, loss cost and outage cost using the GA (Genetic Algorithm).

안정적 전력공급을 위한 154kV 변전소 배전선로간 연계운영에 관한 연구 (A Study on Loop operation of 154kV Substation Distribution line for Stable power supply)

  • 김광호;손명권;정종찬
    • 산업기술연구
    • /
    • 제29권B호
    • /
    • pp.221-228
    • /
    • 2009
  • For a stable supply of electric power, periodical inspection of the electric facilities and repair of the distribution lines are required. In case of any unexpected accidents, looped operation among distribution lines may be necessary in order to supply electricity through the sound lines, separating the faulted lines. As a result of this study, it was found that normal looped operation became impossible when phase difference of the looped distribution lines is more than 3 degrees compared with the voltage supply of the distribution lines. Therefore, for a stable supply of electric power to Chuncheon, it is judged to be desirable that looped operation of the distribution lines coming from the same substation M. Tr Bank shall be performed in principle and in case of looped operation with the substation of different system, looped operation among the lines shall be performed after voltage regulation of the substation M. Tr Bank, maintaining similar voltages and load supply volume in order to avoid phase difference through checking the operation conditions of each substation M. Tr Banks. And when looped operation among the distribution lines is scheduled, voltage regulation schedule has been established so far by calculating maximum supply volume through the transformer of the substation and the maximum load volume through the distribution lines but in the future, looped operation of the distribution lines shall be carried out by removing voltage difference with regulating tap or load of the surrounding transformers, with giving prior notice to the substation operators.

  • PDF

A Strategy for Balanced Power Regulation of Energy Storage Systems in a Distribution System during Closed-Loop Operation

  • Han, Yoon-Tak;Oh, Joon-Seok;Cha, Jae-Hun;An, Jae-Yun;Hyun, Seung-Yoon;Lee, Jong-Kwan;Seo, In-Yong;Kim, Jae-Eon
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권6호
    • /
    • pp.2208-2218
    • /
    • 2017
  • To resolve overload in a distribution system, a distribution system operator (DSO) often performs a load transfer using normally open tie points and switches in the distribution line. During this process, the distribution system is momentarily operated in closed-loop operation. A closed-loop current in the distribution system can cause a power failure due to excess breaking current in the circuit breakers and reclosers. Therefore, it is necessary to calculate the closed-loop current exactly. However, if there are a large number of distributed generation (DG) systems in the distribution system, such as energy storage systems (ESS), they might obstruct the closed-loop operation based on bidirectional power flow. For quick and precise operation of a closed-loop system, the ESS has to regulate the power generation while satisfying closed-loop operation in the worst cases. We propose a strategy for balanced power regulation of an ESS. Simulations were carried out using PSCAD/EMTDC, and the results were compared with calculation results.

S-자동차 부품 물류센터에서 오더픽킹 작업능력 향상을 위한 연구 (A Study on the Improvement of Order-Picking Operation in S-Automobile Parts Distribution Center)

  • 박정현;박양병
    • 산업공학
    • /
    • 제17권4호
    • /
    • pp.450-458
    • /
    • 2004
  • S-Distribution Center supplies parts to three plants of K-automobile manufacturing company. Since the three plants employ the JIT production system, it is important for S-Distribution Center to deliver small quantities of parts frequently and quickly on time. This paper presents a case study on the improvement of order-picking operation in S-Distribution Center. The study is focused on the reductions of move time and waiting time by redesigning the parts storage location, picking-order terminal location, retrieval policy, and equipment operation policy. The proposed operation system for S-Distribution Center is evaluated through a simple computation analysis and computer simulation. Furthermore, the reducible numbers of equipment and order pickers are investigated by performing a sensitivity analysis.

배전계통 운영비용의 최소화에 의한 분산전원의 최적용량과 위치결정 (Optimal capacity and allocation of distributed generation by minimum operation cost of distribution system)

  • 박정훈;배인수;김진오;심헌
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 A
    • /
    • pp.360-362
    • /
    • 2003
  • In operation of distribution system, DGs(Distributed Generations) are installed as an alternative of extension and establishment of substations, transmission and distribution lines according to increasing power demand. Optimal capacity and allocation of DGs improve power quality and reliability. This paper proposes a method for determining the optimal number, size and allocation of DGs needed to minimize operation cost of distribution system. Capacity of DGs for economic operation of distribution system can be estimated by the load growth and line capacity during operation planning duration. DG allocations are determined to minimize total cost with failure rate and annual reliability cost of each load point using GA(Genetic Algorithm).

  • PDF

배전운영 시스템에서 상시개방 연계 스위치 투입에 의한 루프 운전 중 구간전압 계산 방법 (Section Voltage Calculation while a Loop Operation by Tie-Switch Close in a Distribution Management System)

  • 서정수;임일형;박종호;신용학;최면송
    • 전기학회논문지
    • /
    • 제65권3호
    • /
    • pp.397-403
    • /
    • 2016
  • Generally, an electrical distribution configuration is a radial system with one-way current in a distribution management system (DMS). All feeders in a DMS have tie-switches to make radial system. Sometimes, DMS should change a tie-switch for operation. In that case, the tie-switch has to be closed first; then a switch is opened as another tie-switch in order to prevent blackout for customers. At the moment when the tie-switch is closed, distribution system is operated in a loop state, not radial. Before the loop operation, DMS operator has to check any expected events for stable distribution system operation; and the most important event is a mis-operation of a protection relay. In addition, DMS operator should check voltage profile violation but a calculation method of section voltages had not been used. Thus, this paper proposes a calculation method of section voltages at a loop operation in a DMS. The proposed calculation algorithm is verified by Matlap Simulink.

분산 전원의 고립 운전 검출 기법의 개발 (Development of a New Islanding Detection Method for Distributed Resources)

  • 장성일;김광호
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제50권11호
    • /
    • pp.506-513
    • /
    • 2001
  • The islanding detection for distributed resources (DR) becomes an important and emerging issue in power system protection since the distributed generator installations are rapidly increasing and most of the installed systems are interconnected with distribution network. In order to avoid the negative impacts from islanding operations of DR on protection, operation and management of distribution system, it is necessary to effectively detect the islanding operations of DR and rapidly disconnect it from distribution network. Generally, it is difficult to detect islanding operation by monitoring only one system parameter This paper presents a new logic based islanding detection method for distributed resources(DR) which are interconnected with distribution network. The proposed method detects the islanding operation by monitoring four system parameter: voltage variation, phase displacement, frequency variation, and the variation of total harmonic distortion(THD) of current; therefore, it effectively detects island operation of DR unit operating in parallel with the distribution network. We also verified the efficiency of the proposed algorithm using the radial distribution network of IEEE 34 bus model.

  • PDF