• Title/Summary/Keyword: Distribution of particles

Search Result 1,787, Processing Time 0.032 seconds

Physico-chemical Characteristics of Soil in the Vicinity of King Sejong Station, King George Island, Antarctica (남극 킹조지섬 세종기지 주변지역 토양의 물리화학적 특성)

  • Choi, Ik-Won;Park, Yang-Ju;Seo, Dong-Cheol;Kang, Se-Won;Jeon, Weon-Tai;Kang, Ui-Gum;Sung, Hwan-Hoo;Hur, Tai-Young;Heo, Jong-Soo;Cho, Ju-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.5
    • /
    • pp.709-716
    • /
    • 2011
  • In order to collect basic data of soil environment in the Vicinity of King Sejong Station, King George Island, Antarctica, the physico-chemical characteristics of soils were investigated. Soil samples were collected in Barton Peninsula from 13 sites according to direction from the Sejong Cape. Soils from 13 sites were divided into three groups. The sand percentage of soils were much higher as above 90% than silt and clay percentages of soils at the all sites. Soil texture was classified sandy (10 sites) and loamy sand (3 sites). In distribution characteristics at different soil particles according to direction, large particles ($>500{\mu}m$) were higher in the order of Group 1 (Marian cove coast regions) > Group 2 (Inland regions) > Group 3 (Maxwell bay coast regions). On the other hand, small particles ($<355{\mu}m$) were higher in the order of Group 3 > Group 2 > Group 1. Chemical characteristic of soils showed significant differences at different areas. pH ranged 4.5-6.7, showing it was slightly acid and EC ranged $0.06-0.16dS\;m^{-1}$. T-N, OM and T-C contents were high at #6, #8, #12 and #13 sites. T-P and P2O5 contents were high at #9 and #12 sites. The results of this study will be helpful to understand soil environment in the Antarctic Peninsula and surrounding islands.

Microbiological Identification and Distribution of Metal Components in Suspended Particulate Matter during Yellow Sand Phenomena at TaeAn Region in 2003 (2003년 태안지역에서 황사 부유분진의 미생물학적 동정과 금속 성분 및 농도)

  • Bae, Kang Woo;Kim, Jong Ho;Kim, Youn Seup;Park, Jae Seuk;Jee, Young Koo;Lee, Kye Young
    • Tuberculosis and Respiratory Diseases
    • /
    • v.58 no.2
    • /
    • pp.167-173
    • /
    • 2005
  • Background : Airborne particles during Yellow Sand phenomena are known to be associated with the respiratory disease. The purpose of this study was to evaluate the concentration and metal component properties of Yellow Sand particles and compare with airborne microbial concentration and species in non Yellow Sand and Yellow Sand phenomena. Methods : Samplings were carried out in 2002 in Seosan, during non Yellow Sand and Yellow Sand phenomena. Samples were taken using the 8-stage Cascade impactor and metallic elements were analyzed by XRF. Those were culture on the media for bacterial and fungal culture and celline for virus. Results : The concentration of total suspended particulate matter were respectively $80.2{\mu}g/m^3$, $40.3{\mu}g/m^3$ in non Yellow Sand and Yellow Sand phenomena. The concentration of metallic elements such as Ca, Fe, Cu and Zn in Yellow Sand phenomena were higher than its in non Yellow Sand. Two bacteria, Bacillus species and Staphylococcus were grown in two periods. In both periods, several fungal spores(Mucor species, Cladosporum, Alternaria, Aspergillus, Penicillium, and Alternaria species) were identified. The differences of bacteria and fungus species not observed in Yellow Sand and non Yellow Sand. Any viruses were not isolated in between both periods. Conclusions : The concentration of total suspended particulate matter and some metallic elements in Yellow Sand phenomena were higher than its in non Yellow Sand. The difference of bacteria and fungus species was not observed in non Yellow Sand and Yellow Sand phenomena.

COATED PARTICLE FUEL FOR HIGH TEMPERATURE GAS COOLED REACTORS

  • Verfondern, Karl;Nabielek, Heinz;Kendall, James M.
    • Nuclear Engineering and Technology
    • /
    • v.39 no.5
    • /
    • pp.603-616
    • /
    • 2007
  • Roy Huddle, having invented the coated particle in Harwell 1957, stated in the early 1970s that we know now everything about particles and coatings and should be going over to deal with other problems. This was on the occasion of the Dragon fuel performance information meeting London 1973: How wrong a genius be! It took until 1978 that really good particles were made in Germany, then during the Japanese HTTR production in the 1990s and finally the Chinese 2000-2001 campaign for HTR-10. Here, we present a review of history and present status. Today, good fuel is measured by different standards from the seventies: where $9*10^{-4}$ initial free heavy metal fraction was typical for early AVR carbide fuel and $3*10^{-4}$ initial free heavy metal fraction was acceptable for oxide fuel in THTR, we insist on values more than an order of magnitude below this value today. Half a percent of particle failure at the end-of-irradiation, another ancient standard, is not even acceptable today, even for the most severe accidents. While legislation and licensing has not changed, one of the reasons we insist on these improvements is the preference for passive systems rather than active controls of earlier times. After renewed HTGR interest, we are reporting about the start of new or reactivated coated particle work in several parts of the world, considering the aspects of designs/ traditional and new materials, manufacturing technologies/ quality control quality assurance, irradiation and accident performance, modeling and performance predictions, and fuel cycle aspects and spent fuel treatment. In very general terms, the coated particle should be strong, reliable, retentive, and affordable. These properties have to be quantified and will be eventually optimized for a specific application system. Results obtained so far indicate that the same particle can be used for steam cycle applications with $700-750^{\circ}C$ helium coolant gas exit, for gas turbine applications at $850-900^{\circ}C$ and for process heat/hydrogen generation applications with $950^{\circ}C$ outlet temperatures. There is a clear set of standards for modem high quality fuel in terms of low levels of heavy metal contamination, manufacture-induced particle defects during fuel body and fuel element making, irradiation/accident induced particle failures and limits on fission product release from intact particles. While gas-cooled reactor design is still open-ended with blocks for the prismatic and spherical fuel elements for the pebble-bed design, there is near worldwide agreement on high quality fuel: a $500{\mu}m$ diameter $UO_2$ kernel of 10% enrichment is surrounded by a $100{\mu}m$ thick sacrificial buffer layer to be followed by a dense inner pyrocarbon layer, a high quality silicon carbide layer of $35{\mu}m$ thickness and theoretical density and another outer pyrocarbon layer. Good performance has been demonstrated both under operational and under accident conditions, i.e. to 10% FIMA and maximum $1600^{\circ}C$ afterwards. And it is the wide-ranging demonstration experience that makes this particle superior. Recommendations are made for further work: 1. Generation of data for presently manufactured materials, e.g. SiC strength and strength distribution, PyC creep and shrinkage and many more material data sets. 2. Renewed start of irradiation and accident testing of modem coated particle fuel. 3. Analysis of existing and newly created data with a view to demonstrate satisfactory performance at burnups beyond 10% FIMA and complete fission product retention even in accidents that go beyond $1600^{\circ}C$ for a short period of time. This work should proceed at both national and international level.

Nonlinear System State Estimating Using Unscented Particle Filters (언센티드 파티클 필터를 이용한 비선형 시스템 상태 추정)

  • Kwon, Oh-Shin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.6
    • /
    • pp.1273-1280
    • /
    • 2013
  • The UKF algorithm for tracking moving objects has fast convergence speed and good tracking performance without the derivative computation. However, this algorithm has serious drawbacks which limit its use in conditions such as Gaussian noise distribution. Meanwhile, the particle filter(PF) is a state estimation method applied to nonlinear and non-Gaussian systems without these limitations. But this method also has some disadvantages such as computation increase as the number of particles rises. In this paper, we propose the Unscented Particle Filter (UPF) algorithm which combines Unscented Kalman Filter (UKF) and Particle Filter (PF) in order to overcome these drawbacks.The performance of the UPF algorithm was tested to compare with Particle Filter using a 2-DOF (Degree of Freedom) Pendulum System. The results show that the proposed algorithm is more suitable to the nonlinear and non-Gaussian state estimation compared with PF.

Modelling of Large Triaxial Test with Rockfill Materials by Distinct Element Method (개별요소법에 의한 락필재료의 대형삼축압축시험 모델링)

  • Jeon, Je-Sung;Kim, Ki-Young;Shin, Dong-Hoon
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.10
    • /
    • pp.111-120
    • /
    • 2006
  • In this research, numerical simulations by PFC considering discrete element method are conducted to predict experimental results of large triaxial compression test with rockfill material for dam construction. For generation of compacted assembly with specific grain size distribution and initial material porosity, the clump logic method and expansion of generated particles are adapted. To predict stress-stain behavior of large triaxial test, discrete particle modelling is applied with micro parameters which are chosen by calibration process. It is expected that distinct particle modelling method could be used as a useful tool to investigate micro and macro behavior associated with geotechnical problems and develop a numerical laboratory.

A Real-time Particle Filtering Framework for Robust Camera Tracking in An AR Environment (증강현실 환경에서의 강건한 카메라 추적을 위한 실시간 입자 필터링 기법)

  • Lee, Seok-Han
    • Journal of Digital Contents Society
    • /
    • v.11 no.4
    • /
    • pp.597-606
    • /
    • 2010
  • This paper describes a real-time camera tracking framework specifically designed to track a monocular camera in an AR workspace. Typically, the Kalman filter is often employed for the camera tracking. In general, however, tracking performances of conventional methods are seriously affected by unpredictable situations such as ambiguity in feature detection, occlusion of features and rapid camera shake. In this paper, a recursive Bayesian sampling framework which is also known as the particle filter is adopted for the camera pose estimation. In our system, the camera state is estimated on the basis of the Gaussian distribution without employing additional uncertainty model and sample weight computation. In addition, the camera state is directly computed based on new sample particles which are distributed according to the true posterior of system state. In order to verify the proposed system, we conduct several experiments for unstable situations in the desktop AR environments.

GEO-KOMPSAT-2A KSEM Requirements and its System Design (정지궤도복합위성 우주기상탑재체 개발 요구사항 및 시스템 설계)

  • Jin, Kyoung-Wook;Jang, Sung-Soo;Choi, Jung-Su;Yang, Koon-Ho;Seon, Jongho;Chae, Kyu-Sung;Park, Junyong
    • Aerospace Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.115-121
    • /
    • 2014
  • GEO-KOMPSAT-2 (GK2) program, which develops two advanced geostationary satellites simultaneously after the successful COMS mission (2010~present), is on going. An improved next generation meteorological payload and space weather sensors will be equipped on the GK2A. The space weather sensor will be the Korea's first geostationary space environment monitoring payload. Main objectives of the project are its applications into space weather forecasting and pre-warning of hazardous space weather by monitoring physical phenomena such as distribution of high energetic particles, Earth's magnetic fields and charging currents on the spacecraft at a geostationary orbit using the three space weather sensors(energetic particle detector, magnetometer and charging monitor). The summary of the GK2A space weather sensor development and its system and interface designs were described in the paper.

Spferical fine ZnO Particles prepared from zinc nitrate by Ultrasonic Spray Pyrolysis technique (초음파 분무 열분해법에 의해 질산아연용액으로부터 구형의 ZnO 미분말 제조)

  • 이서영;김영도;신건철
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.1 no.2
    • /
    • pp.46-58
    • /
    • 1991
  • The synthesized ZnO powder was prepared by spray pyrolysis method using ultrasonic vibrator. The starting solutons were the aqueous solution of $Zn(NO_3)_2\cdot6H_2O$. The concentration was prepared 1M, O.5M, O.25M, and O.lM. The Nz carrier gas was 2.3cm$\cdot{sec}^{-1}$. The prepared powder from the $Zn(NO_3)_2{\cdot}6H_2O$ aqueous solution was Zine oxide with hexagonal structure. The shape of prepared powder was fine size, narrow size distribution, agglomerate-free, nearly sphere particle. Also, the particle size was about $ 0.28-0.61\mum$.

  • PDF

The Food Safety of Superfine Powder (Phellinus linteus) Processed by Nanomill in C57BL/6 Mice (C57BL/6 마우스에서 나노밀 가공된 초미세분말(상황버섯)의 식이 안전성 연구)

  • Kim, Dong-Heui;Teng, Yung-Chien;Yoon, Yang-Sook;Qi, Xu-Feng;Jeong, Hyun-Seok;Joo, Kyung-Bok;Lee, Kyu-Jae
    • Applied Microscopy
    • /
    • v.39 no.2
    • /
    • pp.133-139
    • /
    • 2009
  • A officinal mushroom, Phellinus linteus (PL) has been known to exhibit potent biological activities including antioxidative and anticancer effect. PL is consumed as a type of powder or extract for the purpose of health promotion and disease treatment. Recently superfine PL products was commercialized according to the development of pulverizing technology such as nanomill, so the evaluation of food safety is suggested. This study was conducted to evaluate the food safety of superfine PL (SPL) through hematological, biochemical and histological examination in mice as compared with fine PL (FPL). In the particle size distribution in volume after nanomill processing, the mean diameter of SPL and FPL particles was 11.78 ${\mu}m$ and 216.1 ${\mu}m$, and d (0.5), the particle diameter measured at 50% of distribution was 5.5 ${\mu}m$ and 147.9 ${\mu}m$, respectively. As the result of body weight, food intake and the weight of organs, SPL group didn't show any statistical difference compared with FPL group and normal group (N). Hematological and biochemical values were also involved in the normal range, although ALT (N vs. FPL, P<0.001) and BUN (N vs. FPL, P<0.01; N vs. SPL, P<0.01) showed significance compared with N group but there are no significance between FPL and SPL group. In the result of histological examination with liver, kidney, spleen, and small and large intestine, abnormal findings such as inflammatory reaction and histological changes were not observed. Our results suggest that the oral intake of SPL diet is not harmful to the animal in the hematological, biochemical and histological aspects although particle size was reduced to the level of superfine. However, further study will be necessary to confirm the histological safety in relation to the gastrointestinal contact of superfine particles in the case of large amount and long-term intake.

AKARI FAR-INFRARED ALL-SKY SURVEY MAPS

  • Doi, Yasuo;Komugi, Shinya;Kawada, Mitsunobu;Takita, Satoshi;Arimatsu, Ko;Ikeda, Norio;Kato, Daisuke;Kitamura, Yoshimi;Nakagawa, Takao;Ootsubo, Takafumi;Morishima, Takahiro;Hattori, Makoto;Tanaka, Masahiro;White, Glenn J.;Etxaluze, Mireya;Shibai, Hiroshi
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.4
    • /
    • pp.111-116
    • /
    • 2012
  • Far-infrared observations provide crucial data for the investigation and characterisation of the properties of dusty material in the Interstellar Medium (ISM), since most of its energy is emitted between ~ 100 and $200{\mu}m$. We present the first all-sky image from a sensitive all-sky survey using the Japanese AKARI satellite, in the wavelength range $50-180{\mu}m$. Covering > 99% of the sky in four photometric bands with four filters centred at $65{\mu}m$, $90{\mu}m$, $140{\mu}m$, and $160{\mu}m$ wavelengths, this achieved spatial resolutions from 1 to 2 arcmin and a detection limit of < 10 MJy $sr^{-1}$, with absolute and relative photometric accuracies of < 20%. All-sky images of the Galactic dust continuum emission enable astronomers to map the large-scale distribution of the diffuse ISM cirrus, to study its thermal dust temperature, emissivity and column density, and to measure the interaction of the Galactic radiation field and embedded objects with the surrounding ISM. In addition to the point source population of stars, protostars, star-forming regions, and galaxies, the high Galactic latitude sky is shown to be covered with a diffuse filamentary-web of dusty emission that traces the potential sites of high latitude star formation. We show that the temperature of dust particles in thermal equilibrium with the ambient interstellar radiation field can be estimated by using $90{\mu}m$, $140{\mu}m$, and $160{\mu}m$ data. The FIR AKARI full-sky maps provide a rich new data set within which astronomers can investigate the distribution of interstellar matter throughout our Galaxy, and beyond.