• Title/Summary/Keyword: Distribution loss

Search Result 2,119, Processing Time 0.026 seconds

BLOCK LOSS DISTRIBUTION IN AN M/M/1 QUEUE WITH A CELL DISCARDING SCHEME

  • Lee, Gye-Min;Kwag, Min-Kon;Jeon, Jong-Woo;Kim, Chong-Kwon
    • Communications of the Korean Mathematical Society
    • /
    • v.13 no.3
    • /
    • pp.635-642
    • /
    • 1998
  • When an integrated communication system is congested, we may reserve some spaces for non-realtime traffic by discarding a part of realtime traffic. That is sensible because realtime traffic is insensitive to a few losses. Several discarding schemes have been developed including Separate Queue (SQ). Under such schemes, the block loss distribution, i.e., the distribution of the number of losses within a given block which consists of successive data of a type, is important. We derive the block loss distribution of the SQ scheme and modifies the SQ scheme with a threshold.

  • PDF

The Calculation of Cell Radius for CDMA PCS System on the presumption of Log-normal Distribution with The Hata Path Loss Model (Hata Path Loss Model에서 Log-normal Distribution을 가정한 CDMA PCS 시스템의 Cell반경 산출)

  • 이명국;이호경
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.9A
    • /
    • pp.1306-1313
    • /
    • 1999
  • In this paper, we propose the signal strength path loss model (modified Hata path loss Model) and the signal strength distribution model (log-normal distribution) for the cell design of the land mobile communication system. We applied the measured experimental data at Soosungdon and Sanjuckdong in Daeku, to this model and calculate the fraction of total area above threshold.

  • PDF

Loss Reduction in Heavy Loaded Distribution Networks Using Cyclic Sub Tree Search (순환적 부분트리 탐색법을 이용한 중부하 배전계통의 손실최소화)

  • Choi, Sang-Yule;Shin, Myong-Chul
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.50 no.5
    • /
    • pp.241-247
    • /
    • 2001
  • Network reconfiguration in distribution systems is realized by changing the status of sectionalizing switches, and is usually done for loss reduction of load balancing in the system. This paper presents an effective heuristic based switching scheme to solve the distribution feeder loss reduction problem. The proposed algorithm consists of two parts. One is to set up a decision tree to represent the various switching operations available. Another is to apply a proposed technique called cyclic best first search. the proposed algorithm identify the most effective the set of switch status configuration of distribution system for loss reduction. To demonstrate the validity of the proposed algorithm, numerical calculations are carried out the 32, 69 bus system models.

  • PDF

Quality Characteristics of the Peach According to Temperature and Relative Humidity during Distribution (유통 중 온도 및 습도변화에 따른 복숭아의 품질특성)

  • Kim, G.S.;Kim, D.J.;Park, J.G.;Jung, H.M.;Park, J.M.;Kim, M.S.
    • Journal of Biosystems Engineering
    • /
    • v.34 no.3
    • /
    • pp.183-189
    • /
    • 2009
  • Environmental conditions may cause the quality change of fruits during distribution after harvest. In order to prevent the damage or quality change of fruits for distribution, the characteristic of fruits affected by the environmental conditions such as temperature, humidity under various distribution conditions should be known. This research was performed to analyze how the environmental conditions affect the factors such as weight loss rate and ethylene production of the peach under several distribution conditions. Environmental conditions of the actual distributed route were evaluated and the data obtained from the conditions were used for the simulated environmental tests. Regression models of the weight loss rate and the ethylene production of peach were developed and used in predicting peach quality. The weight loss rate of the peach estimated by the ASHRAE data was shown the higher value on the transportation temperature condition than on the low and room temperature conditions. The weight loss rate and the ethylene production of the peach on the simulated distribution conditions were measured and the measured weight loss rate of peach was the smaller than the theoretically estimated one. The regression models of the weight loss rate and the ethylene production were developed respectively.

The Simplified Economic Evaluation of Extra-High Voltage Distribution System in the Large Apartment Complex (대단위 아파트에서 특고압 배전시스템의 경제성 평가)

  • Yun, Man-Soo;Chung, Chan-Soo;Park, Hyung-Joon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.3
    • /
    • pp.117-124
    • /
    • 2007
  • This paper is about the Extra-High voltage distribution system in the customer's area. The power loss in the distribution system in the customer's area is disregarded and rarely managed so far. But, economically, this loss is not small quality to ignore. So, in this paper, we calculate the power loss of the Extra-High voltage distribution system in the customer's area by changing the locations of power transformer and other power facilities to decrease power loss in decreased secondary line length. And we also show the payback time of the proposed Extra-High voltage distribution system in the customer's area by simplified calculations.

Optimal Routing of Distribution Network Considering Reliability Indices (신뢰도 지수를 고려한 배전계통의 최적 전력전송경로 결정)

  • 신동환;노병권;김진오
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.9
    • /
    • pp.1073-1080
    • /
    • 1999
  • Optimal routing of distribution networks can be attained by keeping the line power capacity limit to handle load requirements, acceptable voltage at customer loads, and the reliability indices such as SAIFI, SAIDI, CAIDI, and ASAI limits. This method is composed of optimal loss reduction and optimal reliability cost reduction. The former is solved relating to the conductor resistance of all alternative routes, and the latter is solved relating to the failure rate and duration of each alternative route. The routing considering optimal loss only and both optimal loss and optimal reliability cost are compared in this paper. The case studies with 10 and 24 bus distribution networks showed that reliability cost should be considered as well as loss reduction to achieve the optimal routing in the distribution networks.

  • PDF

Losses in Power Distribution Transformers

  • Ketkaew, Chaliew;Philphud, Mana;Sungthong, Tossapol;Rachawong, Wiriya;Kalong, Putchong;Noohawm, Onurai;Rerkpreedapong, Dulpichet
    • International Journal of Advanced Culture Technology
    • /
    • v.3 no.2
    • /
    • pp.144-148
    • /
    • 2015
  • The paper presents the estimation of power losses in distribution transformer of Provincial Electricity Authority (PEA) distribution system at Muang district of Suphanburi province in Thailand. Data of 416 power distribution transformers composed of transformer (kVA), load current, no load loss and full load loss which were used for calculating energy losses. It was found that the total energy loss of all transformers is approximately 1,756,380 kWh/year.

Bayesian Estimation of Three-parameter Bathtub Shaped Lifetime Distribution Based on Progressive Type-II Censoring with Binomial Removal

  • Chung, Younshik
    • Journal of the Korean Data Analysis Society
    • /
    • v.20 no.6
    • /
    • pp.2747-2757
    • /
    • 2018
  • We consider the MLE (maximum likelihood estimate) and Bayesian estimates of three-parameter bathtub-shaped lifetime distribution based on the progressive type II censoring with binomial removal. Jung, Chung (2018) proposed the three-parameter bathtub-shaped distribution which is the extension of the two-parameter bathtub-shaped distribution given by Zhang (2004). Jung, Chung (2018) investigated its properties and estimations. The maximum likelihood estimates are computed using Newton-Raphson algorithm. Also, Bayesian estimates are obtained under the balanced loss function using MCMC (Markov chain Monte Carlo) method. In particular, BSEL (balanced squared error loss) function is considered as a special form of balanced loss function given by Zellner (1994). For comparing theirs MLEs with the corresponding Bayes estimates, some simulations are performed. It shows that Bayes estimates is better than MLEs in terms of risks. Finally, concluding remarks are mentioned.

A Study on Calculation Method of Power Losses in 22.9kV Power Distribution Lines (22.9kV 배전선로 전력손실산출 기법에 관한 연구)

  • Hwang, In-Sung;Hong, Soon-Il;Moon, Jong-Fil
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.66 no.4
    • /
    • pp.219-223
    • /
    • 2017
  • In this paper, we calculated the losses in the high voltage lines of power distribution system. The losses caused by high voltage lines are calculated using maximum current, resistance, loss factor, and dispersion loss factor. The accurate extraction of these factors are very important to calculate the losses exactly. Thus, the maximum loads are subdivided to regions and calculated monthly for more accurate maximum current calculation. Also, the composite resistance is calculated according to the ratio of the used wire types. In order to calculate the loss factor, the load factors according to the characteristics of each region were calculated. Finally, the losses of the distribution system is calculated by adding the losses by the transformers and the low voltage lines.

Loss Minimization for Distribution Network using Partial Tree Search (부분 tree 탐색을 이용한 배전계통의 손실 최소화)

  • Choi, S.Y.;Shin, M.C.;Nam, G.Y.;Cho, P.H.;Park, J.S.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.519-521
    • /
    • 2000
  • Network reconfiguration is an operation task, and consists in the determination of the switching operations such to reach the minimum loss conditions of the distribution network. In this paper, an effective heuristic based switch scheme for loss minimization is given for the optimization of distribution loss reduction and a solution approach is presented. The solution algorithm for loss minimization has been developed based on the two stage solution methodology. The first stage of this solution algorithm sets up a decision tree which represent the various switching operations available, the second stage applies a proposed technique called cyclic best first search. Therefore, the solution algorithm of proposed method can determine on-off switch statuses for loss reduction, with a minimum computational effort.

  • PDF