• Title/Summary/Keyword: Distribution System Protection

Search Result 551, Processing Time 0.027 seconds

Protection Level Evaluation of Distribution Systems Based on Dempster-Shafer Theory of Evidence (Dempster-Shafer 증거 이론을 이용한 배전계통 보호도 평가)

  • Kim, He-Chul;Lee, Seung-Jae;Kang, Sang-Hee;Ahn, Bok-Shin;Park, Jong-Kuk
    • Proceedings of the KIEE Conference
    • /
    • 1998.07c
    • /
    • pp.896-898
    • /
    • 1998
  • Recent development of the digital computer and communication technology has made the concept of the adaptive protection possible, which is to adapt the operating parameters of the protective devices to the system changes, so that the best protection function can be maintained all the time. In order to achieve the adaptive protection, it is necessary to have the way to determine whether the change of the settings is needed under the certain system change or how good the current protection level is. This paper proposed the protectability index, which is a way to evaluate the protection level of the system under arbitary conditions and the operating strategy of the adaptive protection utilizing this index. It is based on an hierachical evaluation model and the evidence combination rule of the Dempster-Shafer theory.

  • PDF

A Study on the Algorithm for Multi-Functional Protection Devices in Distribution Systems with New Energy Sources (신 에너지전원이 연계된 배전계통의 통합 보호기기의 알고리즘 개발에 관한 연구)

  • Yoon, Gi-Gab;Kang, Dae-Hoon;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.9
    • /
    • pp.2253-2260
    • /
    • 2009
  • The typical distribution systems have the power flow from distribution substations (sources) to customers (load) only as one direction. However, in the case where new energy power sources are connected to distribution systems, the output variations of new energy sources to distribution systems, which is so called reverse power flow, may cause the bi-directional power flow. So, the reverse power flow has severe impacts on typical power system, for example power quality problems, protection coordination problems, and so on. Therefore, this paper proposes the algorithm for Multi-functional protection devices in distribution systems in the case where new energy sources are interconnected. The proposed algorithm is verified to show the effectiveness by simulating and experimenting the prototype systems.

The Construction of distribution test facilities of lightning protection equipment (배전급 내뢰설비 시설효과 분석 실증시험설비 구축에 관한 연구)

  • Kang, Moon-Ho
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.301-303
    • /
    • 2004
  • In distribution system about 5% of total outage is due to the lightning stroke. In order to reduce the rate of outage occurrence, distribution lightning protection equipments such as a secondary arrester, arching horn and various ground electrodes are developed and installed in the inside and outside of the county. Therefore it is needed to construct the test facilities to analyze the effect of these equipments. In this paper we describe the main content of the test facilities of lightning protection equipments. We have completed the field test of distribution lightning protection equipments for example lightning arrester, secondary arrester and arching horn etc.

  • PDF

The Study on the Actual Examination of the Bidirectional Protection Device in the 22.9[kV] Distribution Power System Interconnected with the DG (분산전원이 연결된 22.9[kV] 배전계통의 양방향 보호기기 실증시험 연구)

  • Lee, Heung-Jae;Choi, Myeong-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.10
    • /
    • pp.102-108
    • /
    • 2011
  • The existing power flow has a single direction to the line end but the bidirectional power flow will possibly occur depending on the output capacity in the 22.9[kV] distribution power system connected with the dispersed generation(DG). So these characteristics would influence the power system management. The DG have many advantages such as assistance source, Load share etc. So the utility must apply the bidirectional protection system so as to maximize an advantage of DG. This paper describes the field test case of bidirectional protective device in order to investigate the device performance when applied to bidirectional power system. We have tested in the power system test site of KEPCO and these tests provide the basis for performance verification test of bidirectional protective device in the power system.

A Distributed Communication Architecture Based on the Peer-to-Peer Model for Enhancing Distribution Automation System Services (배전자동화 시스템의 서비스 향상을 위한 P2P 기반의 분산형 통신망 구조)

  • Lim, Il-Hyung;Hong, Sug-Won;Choi, Myeon-Song;Lee, Seung-Jae;Ha, Bok-Nam
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.3
    • /
    • pp.443-450
    • /
    • 2007
  • We overview the current distribution automation system in Korea and point out the limitations of the distribution services which can be provided by the current system. In this paper we propose a new distribution system architecture which is based on the peer-to-peer communication model. In this decentralized architecture the intelligent FRTUS can initiate data transmission without any interruption of a central server, and can exchange data with other FRTUS as peers. In order to support the peer-based distribution system, we specify the requirements for new communication network and suggest a way of improving the current distribution network where we adapt an intelligent module for protection and restoration, called MASX, and utilize the open communication network protocols. We also show how the new architecture can enhance major distribution services such as protection, automatic restoration, and equipment management.

Development of High Speed Circuit Breaker using Electromagnetic Repulsion Actuator (전자기 반발 구동장치를 사용한 고속 차단기 개발)

  • Hwang, Kwang-Soo;Kim, Young-Il;Moon, Chae-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.3
    • /
    • pp.441-448
    • /
    • 2022
  • In the distribution system, there are multiple power protection systems such as circuit breakers at substations, and reclosers, minimum circuit ampacities, fault interrupters on distribution lines. They are widely used to prevent partial outages, cascading power failure or blackout so that other healthy systems could maintain the integrity in case of the instant fault or permanent failure on the power lines. However, when a fault happens, it could cause a major black out due to the lack of the protection cooperation between the protection relay of the circuit breaker at a substation and a protection system on the distribution lines. To achieve the power system integrity better, it is required to develop the circuit breaker which can be operational within 1 cycle(16ms). In this study, the high speed circuit breaker which is filled up with eco-friendly gas is developed. This equipment achieved an excellent test results based on IEC 62271-111 standard. It is respected that this equipment would contribute to prevent the wide area blackout by isolating a fault area quicker and faster.

Supervisory Protection System of Microgird Interconnected to Low Voltage Grids (저압계통 연계형 마이크로그리드의 보호감시 시스템)

  • Jyung, Tae-Young;Baek, Young-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.1
    • /
    • pp.36-42
    • /
    • 2011
  • This paper mainly proposes the protective coordination scheme of the microgrid system. The microgrid protection is identical to the conventional protection system separating the normal part and contingency part to reduce damage when the contingency occur at power cables, facilities. But they are different in the protection type. The conventional protection system only considers unidirectional current. However the microgrid protection should be considered not only unidirectional current but also backfeed current because various microsources and loads are installed in the microgrid system. In case the contingency occurs in microsource, when microgrid is interconnected to grid, the protection system should be configured to not separate microgrid from grid before the microsource is isolated to microgrid. And in case of fault occur in power system, the microsources should not isolated to microgrid before the static switch at PCC is tripped to separate from power system. Considering these characteristic of microgird, this paper proposes the protective coordination scheme of microgrid and implemented the on-line real time monitoring system. Especially in case the microgrid is connected to low voltage distribution system with 220/380V voltage level, the proposed protection method with power IT technology can solve the problems when the existing protective devices only applied to the microgrid system.

A Protection Algorithm of Grid-Interactive Photovoltaic System Considering Operation Characteristics of Recloser (리클로져의 동작특성을 고려한 계통연계형 태양광발전시스템의 보호 알고리즘)

  • Kim, Seul-Ki;Kim, Eung-Sang
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.5
    • /
    • pp.280-286
    • /
    • 2006
  • The paper proposes a new protection algorithm for reliable operation of grid-interfaced PV system, which can flexibly interact with conventional protective schemes of power utility grid not only to prevent damages to utility or public persons and utility apparatus caused by malfunction or failure in distribution network protection system, but also to protect a PV system itself from faults or abnormal conditions of the network. The proposed algorithm is based on reclosing characteristics of the distribution system. As a network fault occurs, the new scheme determines whether it is momentary or permanent and responds in a pre-programmed way to the fault. For permanent outage, the proposed algorithm shuts down inverter's operations but monitoring system voltage and frequency at the point of common coupling with grid. When it comes to the momentary outage, Inverter starts stand-by operation mode so that it can be automatically connected to the grid without start-up procedures as soon as the system voltage and frequency returns into the normal operation range. In order to investigate' and evaluate the PV system operation, simulation study based on PSCAD/EMTDC has been carried out to verify the performance of the proposed protection scheme.

Parametric Evaluation Method of Protectability in a Distribution System (파라메터 관점에서의 배전계통 보호도 평가방법)

  • Cho, P.S.;Hyun, S.H.;Lim, S.I.;Lee, S.J.;Lee, D.S.;Waldemar, Waldemar
    • Proceedings of the KIEE Conference
    • /
    • 2002.11b
    • /
    • pp.241-243
    • /
    • 2002
  • Recently, great efforts are concentrated on the autonomous, adaptive protection schemes with advanced artificial intelligence and digital technology. It is highly required for a next generation protective system not only to detect and to clear a fault, but also to fit itself to the changing environment. In this paper it is suggested an evaluation method for the protection ability of a protective system in a distributed system. The suggested method is of bottom-up scheme, in other words, protection ability is estimated from the lowest level of parameters in each protective devices to the highest level of the whole protective system. This feature makes it possible to evaluate the protection ability either for the protective device(or a system), or for a protected system. And, in addition, it is enabled that the protectability concept can be applied in the design stage of a protective system for a distribution network. The proposed method is applied to a simple distributed network to show its effectiveness.

  • PDF

An Expert System for Protection Coordiantion in 22.9KV Distribution System Design (22.9KV 배전설게 보호협조을 위한 전문가 시스템)

  • 김호용;고윤석;손수국;남기영
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.2
    • /
    • pp.119-132
    • /
    • 1990
  • To design protection coordination for an electric power distribution system, an expert system is developed, using both the veteran expert's heuristics and the guide book for the distribution facility operation considering feeder configuration, service route, load characteristics fault current and load current. The expert system developed in this papaer determines the type of protective device(clearing current and sequence). The location and rating change of protective device in the old feeder is realized by using old database. Current(T-C) curves of various kinds of protective devices are stored in Knowledge Base (KB). The expert system is developed on a 32 bit personal computer using PROLOG, AutoCAD,dBASEIIIPLUS and FORTRAN. To compute the fault current and loadflow, FORTRAN is used.

  • PDF