• Title/Summary/Keyword: Distribution System Planning

Search Result 677, Processing Time 0.04 seconds

Investigation of Study Items for the Patterns of Care Study in the Radiotherapy of Laryngeal Cancer: Preliminary Results (후두암의 방사선치료 Patterns of Care Study를 위한 프로그램 항목 개발: 예비 결과)

  • Chung Woong-Ki;Kim I1-Han;Ahn Sung-Ja;Nam Taek-Keun;Oh Yoon-Kyeong;Song Ju-Young;Nah Byung-Sik;Chung Gyung-Ai;Kwon Hyoung-Cheol;Kim Jung-Soo;Kim Soo-Kon;Kang Jeong-Ku
    • Radiation Oncology Journal
    • /
    • v.21 no.4
    • /
    • pp.299-305
    • /
    • 2003
  • Purpose: In order to develop the national guide-lines for the standardization of radiotherapy we are planning to establish a web-based, on-line data-base system for laryngeal cancer. As a first step this study was performed to accumulate the basic clinical information of laryngeal cancer and to determine the items needed for the data-base system. Materials and Methods: We analyzed the clinical data on patients who were treated under the diagnosis of laryngeal cancer from January 1998 through December 1999 In the South-west area of Korea. Eligiblity criteria of the patients are as follows: 18 years or older, currently diagnosed with primary epithelial carcinoma of larynx, and no history of previous treatments for another cancers and the other laryngeal diseases. The items were developed and filled out by radiation oncologlst who are members of forean Southwest Radiation Oncology Group. SPSS vl0.0 software was used for statistical analysis. Results: Data of forty-five patients were collected. Age distribution of patients ranged from 28 to 88 years(median, 61). Laryngeal cancer occurred predominantly In males (10 : 1 sex ratio). Twenty-eight patients (62$\%$) had primary cancers in the glottis and 17 (38$\%$) in the supraglottis. Most of them were diagnosed pathologically as squamous cell carcinoma (44/45, 98$\%$). Twenty-four of 28 glottic cancer patients (86$\%$) had AJCC (American Joint Committee on Cancer) stage I/II, but 50$\%$ (8/16) had In supraglottic cancer patients (p=0.02). Most patients(89$\%$) had the symptom of hoarseness. indirect laryngoscopy was done in all patients and direct laryngoscopy was peformed in 43 (98$\%$) patients. Twenty-one of 28 (75$\%$) glottic cancer cases and 6 of 17 (35$\%$) supraglottic cancer cases were treated with radiation alone, respectively. The combined treatment of surgery and radiation was used in 5 (18$\%$) glottic and 8 (47$\%$) supraglottic patients. Chemotherapy and radiation was used in 2 (7$\%$) glottic and 3 (18$\%$) supraglottic patients. There was no statistically significant difference in the use of combined modality treatments between glottic and supraglottic cancers (p=0.20). In all patients, 6 MV X-ray was used with conventional fractionation. The iraction size was 2 Gy In 80$\%$ of glottic cancer patients compared with 1.8 Gy in 59$\%$ of the patients with supraglottic cancers. The mean total dose delivered to primary lesions were 65.98 ey and 70.15 Gy in glottic and supraglottic patients treated, respectively, with radiation alone. Based on the collected data, 12 modules with 90 items were developed or the study of the patterns of care In laryngeal cancer. Conclusion: The study Items for laryngeal cancer were developed. In the near future, a web system will be established based on the Items Investigated, and then a nation-wide analysis on laryngeal cancer will be processed for the standardization and optimization of radlotherapy.

Evaluation of Dose Change by Using the Deformable Image Registration (DIR) on the Intensity Modulated Radiation Therapy (IMRT) with Glottis Cancer (성문암 세기조절 방사선치료에서 변형영상정합을 이용한 선량변화 평가)

  • Kim, Woo Chul;Min, Chul Kee;Lee, Suk;Choi, Sang Hyoun;Cho, Kwang Hwan;Jung, Jae Hong;Kim, Eun Seog;Yeo, Seung-Gu;Kwon, Soo-Il;Lee, Kil-Dong
    • Progress in Medical Physics
    • /
    • v.25 no.3
    • /
    • pp.167-175
    • /
    • 2014
  • The purpose of this study is to evaluate the variation of the dose which is delivered to the patients with glottis cancer under IMRT (intensity modulated radiation therapy) by using the 3D registration with CBCT (cone beam CT) images and the DIR (deformable image registration) techniques. The CBCT images which were obtained at a one-week interval were reconstructed by using B-spline algorithm in DIR system, and doses were recalculated based on the newly obtained CBCT images. The dose distributions to the tumor and the critical organs were compared with reference. For the change of volume depending on weight at 3 to 5 weeks, there was increased of 1.38~2.04 kg on average. For the body surface depending on weight, there was decreased of 2.1 mm. The dose with transmitted to the carotid since three weeks was increased compared be more than 8.76% planned, and the thyroid gland was decreased to 26.4%. For the physical evaluation factors of the tumor, PITV, TCI, rDHI, mDHI, and CN were decreased to 4.32%, 5.78%, 44.54%, 12.32%, and 7.11%, respectively. Moreover, $D_{max}$, $D_{mean}$, $V_{67.50}$, and $D_{95}$ for PTV were increased or decreased to 2.99%, 1.52%, 5.78%, and 11.94%, respectively. Although there was no change of volume depending on weight, the change of body types occurred, and IMRT with the narrow composure margin sensitively responded to such a changing. For the glottis IMRT, the patient's weight changes should be observed and recorded to evaluate the actual dose distribution by using the DIR techniques, and more the adaptive treatment planning during the treatment course is needed to deliver the accurate dose to the patients.

Origin and Storage of Large Woody Debris in a Third-order Mountain Stream Network, Gangwon-do, Korea (강원도 산지계류 내 유목의 기원과 현존량)

  • Kim, Suk Woo;Chun, Kun Woo;Seo, Jung Il;Lim, Young Hyup;Nam, Sooyoun;Jang, Su Jin;Kim, Yong Suk;Lee, Jae Uk
    • Korean Journal of Environment and Ecology
    • /
    • v.34 no.3
    • /
    • pp.249-258
    • /
    • 2020
  • This study aims to provide reference material for effective forest management techniques at the catchment scale, based on the field investigation of large woody debris (LWD) in 11 streams within a third-order forest catchment in Gangwon Province, Korea. To achieve this aim, we analyzed the morphological features of LWD pieces, and the storage and distribution status of LWD by stream order throughout the entire investigation. As a result, a total of 1,207 individual pieces of LWD were categorized into three types as follows: (ⅰ) 1,142 pieces (95%) as only trunk and 65 pieces (5%) as a trunk with root wad, (ⅱ) 1,015 pieces (84%) as non-thinned and 192 pieces (16%) as the thinned, and (ⅲ) 1,050 pieces (87%) as conifer and 157 pieces (13%) as broadleaf. Additionally, in-stream LWD loads (㎥/ha) decreased with increasing stream order, yielding 105.4, 71.3, and 35.6 for first-, second-, and third-order streams, respectively. On the other hand, the ratio of LWD jams to the total LWD volume increased with increasing stream order, yielding 11%, 43%, and 49% for first-, second-, and third-order streams, respectively. Finally, a comparison of the in-stream LWD load with previous studies in several countries around the world indicated that in-stream LWD load was positively correlated with forest stand age even though the climate, topography, forest soil type, forest composition, stand growth rate, disturbance regime, and forest management practices were different. These results could contribute to understanding the significance of LWD as a by-product of forest ecosystems and an indicator of riparian forest disturbance. Based on this, we conclude that advanced forest management techniques, including treatment of thinning slash and stand density control of riparian forest by site location (hillslope and riparian zone, or stream order), should be established in the future, taking the forest ecosystem and the aquatic environment from headwater streams to low land rivers into consideration.

Improved Breast Irradiation Techniques Using Multistatic Fields or Three Dimensional Universal Compensators (Multistatic Field또는 3차원 공용보상체를 사용한 유방의 방사선 조사법의 평가)

  • Han Youngyih;Cho Jae Ho;Park Hee Chul;Chu Sung Sil;Suh Chang-Ok
    • Radiation Oncology Journal
    • /
    • v.20 no.1
    • /
    • pp.24-33
    • /
    • 2002
  • Purpose : In order to improve dose homogeneity and to reduce acute toxicity in tangential whole breast radiotherapy, we evaluated two treatment techniques using multiple static fields or universal compensators. Materials and Methods : 1) Multistatic field technique : Using a three dimensional radiation treatment planning system, Adac Pinnacle 4.0, we accomplished a conventional wedged tangential plan. Examining the isodose distributions, a third field which blocked overdose regions was designed and an opposing field was created by using an automatic function of RTPS. Weighting of the beams was tuned until an ideal dose distribution was obtained. Another pair of beams were added when the dose homogeneity was not satisfactory. 2) Universal compensator technique : The breast shapes and sizes were obtained from the CT images of 20 patients who received whole breast radiation therapy at our institution. The data obtained were averaged and a pair of universal physical compensators were designed for the averaged data. DII (Dose Inhomogeneity Index : percentage volume of PTV outside $95\~105\%$ of the prescribed dose) $D_{max}$ (the maximum point dose in the PTV) and isodose distributions for each technique were compared. Results : The multistatic field technique was found to be superior to the conventional technique, reducing the mean value of DII by $14.6\%$ (p value<0.000) and the $D_{max}$ by $4.7\%$ (p value<0.000). The universal compensator was not significantly superior to the conventional technique since it decreased $D_{max}$ by $0.3\%$ (p value=0.867) and reduced DII by $3.7\%$ (p value=0.260). However, it decreased the value of DII by maximum $18\%$ when patients' breast shapes fitted in with the compensator geometry. Conclusion : The multistatic field technique is effective for improving dose homogeneity for whole breast radiation therapy and is applicable to all patients, whereas the use of universal compensators is effective only in patients whose breast shapes fit inwith the universal compensator geometry, and thus has limited applicability.

Development of Preliminary Quality Assurance Software for $GafChromic^{(R)}$ EBT2 Film Dosimetry ($GafChromic^{(R)}$ EBT2 Film Dosimetry를 위한 품질 관리용 초기 프로그램 개발)

  • Park, Ji-Yeon;Lee, Jeong-Woo;Choi, Kyoung-Sik;Hong, Semie;Park, Byung-Moon;Bae, Yong-Ki;Jung, Won-Gyun;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.21 no.1
    • /
    • pp.113-119
    • /
    • 2010
  • Software for GafChromic EBT2 film dosimetry was developed in this study. The software provides film calibration functions based on color channels, which are categorized depending on the colors red, green, blue, and gray. Evaluations of the correction effects for light scattering of a flat-bed scanner and thickness differences of the active layer are available. Dosimetric results from EBT2 films can be compared with those from the treatment planning system ECLIPSE or the two-dimensional ionization chamber array MatriXX. Dose verification using EBT2 films is implemented by carrying out the following procedures: file import, noise filtering, background correction and active layer correction, dose calculation, and evaluation. The relative and absolute background corrections are selectively applied. The calibration results and fitting equation for the sensitometric curve are exported to files. After two different types of dose matrixes are aligned through the interpolation of spatial pixel spacing, interactive translation, and rotation, profiles and isodose curves are compared. In addition, the gamma index and gamma histogram are analyzed according to the determined criteria of distance-to-agreement and dose difference. The performance evaluations were achieved by dose verification in the $60^{\circ}$-enhanced dynamic wedged field and intensity-modulated (IM) beams for prostate cancer. All pass ratios for the two types of tests showed more than 99% in the evaluation, and a gamma histogram with 3 mm and 3% criteria was used. The software was developed for use in routine periodic quality assurance and complex IM beam verification. It can also be used as a dedicated radiochromic film software tool for analyzing dose distribution.

A study of Brachytherapy for Intraocular Tumor (안구내 악성종양에 대한 저준위 방사선요법에 관한 연구)

  • Ji, Gwang-Su;Yu, Dae-Heon;Lee, Seong-Gu;Kim, Jae-Hyu;Ji, Yeong-Hun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.8 no.1
    • /
    • pp.19-27
    • /
    • 1996
  • I. Project Title A Study of Brachytherapy for intraocular tumor II. Objective and Importance of the project The eye enucleation or external-beam radiation therapy that has been commonly used for the treatment of intraocular tumor have demerits of visual loss and in deficiency of effective tumor dose. Recently, brachytherapy using the plaques containing radioisotope-now treatment method that decrease the demerits of the above mentioned treatment methods and increase the treatment effect-is introduced and performed in the countries, Our purpose of this research is to design suitable shape of plaque for the ophthalmic brachytherapy, and to measure absorbed doses of Ir-192 ophthalmic plaque and thereby calculate the exact radiation dose of tumor and it's adjacent normal tissue. III. Scope and Contents of the project In order to brachytherapy for intraocular tumor, 1. to determine the eye model and selected suitable radioisotope 2. to design the suitable shape of plaque 3. to measure transmission factor and dose distribution for custom made plaques 4. to compare with the these data and results of computer dose calculation models IV. Results and Proposal for Applications The result were as followed. 1. Eye model was determined as a 25mm diameter sphere, Ir-192 was considered the most appropriate as radioisotope for brachytherapy, because of the size, half, energy and availability. 2. Considering the biological response with human tissue and protection of exposed dose, we made the plaques with gold, of which size were 15mm, 17mm and 20mm in diameter, and 1.5mm in thickness. 3. Transmission factor of plaques are all 0.71 with TLD and film dosimetry at the surface of plaques and 0.45, 0.49 at 1.5mm distance of surface, respectively. 4. As compared the measured data for the plaque with Ir-192 seeds to results of computer dose calculation model by Gary Luxton et al. and CAP-PLAN (Radiation Treatment Planning System), absorbed doses are within ${\pm}10\%$ and distance deviations are within 0.4mm Maximum error is $-11.3\%$ and 0.8mm, respectively. As a result of it, we can treat the intraocular tumor more effectively by using custom made gold plaque and Ir-192 seeds.

  • PDF

Review on Usefulness of EPID (Electronic Portal Imaging Device) (EPID (Electronic Portal Imaging Device)의 유용성에 관한 고찰)

  • Lee, Choong Won;Park, Do Keun;Choi, A Hyun;Ahn, Jong Ho;Song, Ki Weon
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.25 no.1
    • /
    • pp.57-67
    • /
    • 2013
  • Purpose: Replacing the film which used to be used for checking the set-up of the patient and dosimetry during radiation therapy, more and more EPID equipped devices are in use at present. Accordingly, this article tried to evaluated the accuracy of the position check-up and the usefulness of dosimetry during the use of an electronic portal imaging device. Materials and Methods: On 50 materials acquired with the search of Korea Society Radiotherapeutic Technology, The Korean Society for Radiation Oncology, and Pubmed using "EPID", "Portal dosimetry", "Portal image", "Dose verification", "Quality control", "Cine mode", "Quality - assurance", and "In vivo dosimetry" as indexes, the usefulness of EPID was analyzed by classifying them as history of EPID and dosimetry, set-up verification and characteristics of EPID. Results: EPID is developed from the first generation of Liquid-filled ionization chamber, through the second generation of Camera-based fluoroscopy, and to the third generation of Amorphous-silicon EPID imaging modes can be divided into EPID mode, Cine mode and Integrated mode. When evaluating absolute dose accuracy of films and EPID, it was found that EPID showed within 1% and EDR2 film showed within 3% errors. It was confirmed that EPID is better in error measurement accuracy than film. When gamma analyzing the dose distribution of the base exposure plane which was calculated from therapy planning system, and planes calculated by EDR2 film and EPID, both film and EPID showed less than 2% of pixels which exceeded 1 at gamma values (r%>1) with in the thresholds such as 3%/3 mm and 2%/2 mm respectively. For the time needed for full course QA in IMRT to compare loads, EDR2 film recorded approximately 110 minutes, and EPID recorded approximately 55 minutes. Conclusion: EPID could easily replace conventional complicated and troublesome film and ionization chamber which used to be used for dosimetry and set-up verification, and it was proved to be very efficient and accurate dosimetry device in quality assurance of IMRT (intensity modulated radiation therapy). As cine mode imaging using EPID allows locating tumors in real-time without additional dose in lung and liver which are mobile according to movements of diaphragm and in rectal cancer patients who have unstable position, it may help to implement the most optimal radiotherapy for patients.

  • PDF

Efficiency Study of 2D Diode Array Detector for IMRT Quality Assurance (2D 어레이 다이오드 검출기를 통한 IMRT 계산선량의 정확성 평가 및 효용성 연구)

  • Kim, Tae-Ho;Oh, Seung-Jong;Kim, Min-Joo;Jung, Won-Gyun;Chung, Jin-Beom;Kim, Jae-Sung;Kim, Si-Yong;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.22 no.2
    • /
    • pp.61-66
    • /
    • 2011
  • In this study, we evaluated the effect of grid size on dose calculation accuracy using 2 head & neck and 2 prostate IMRT cases and based on this study's findings, we also evaluated the efficiency of a 2D diode array detector for IMRT quality assurance. Dose distributions of four IMRT plan data were calculated at four calculation grid sizes (1.25, 2.5, 5, and 10 mm) and the calculated dose distributions were compared with measured dose distributions using 2D diode array detector. Although there was no obvious difference in pass rate of gamma analysis with 3 mm/3% acceptance criteria for the others except 10 mm grid size, we found that the pass rates of 2.5, 5 and 10 mm grid size were decreased 5%, 20% and 31.53% respectively according to the application of the fine acceptance criteria, 3 mm/3%, 2 mm/2% and 1 mm/1%. The calculation time were about 11.5 min, 4.77 min, 2.95 min, and 11.5 min at 1.25, 2.5, 5, and 10 mm, respectively and as the grid size increased to double, the calculation time decreased about one-half. The grid size effect was observed more clearly in the high gradient area than the low gradient area. In conclusion, 2.5 mm grid size is considered acceptable for most IMRT plans but at least in the high gradient area, 1.25 mm grid size is required to accurately predict the dose distribution. These results are exactly same as the precious studies' results and theory. So we confirmed that 2D array diode detector was suitable for the IMRT QA.

Improvement of the Dose Calculation Accuracy Using MVCBCT Image Processing (Megavoltage Cone-Beam CT 영상의 변환을 이용한 선량 계산의 정확성 향상)

  • Kim, Min-Joo;Cho, Woong;Kang, Young-Nam;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.23 no.1
    • /
    • pp.62-69
    • /
    • 2012
  • The dose re-calculation process using Megavoltage cone-beam CT images is inevitable process to perform the Adaptive Radiation Therapy (ART). The purpose of this study is to improve dose re-calculation accuracy using MVCBCT images by applying intensity calibration method and three dimensional rigid body transform and filtering process. The three dimensional rigid body transform and Gaussian smoothing filtering process to MVCBCT Rando phantom images was applied to reduce image orientation error and the noise of the MVCBCT images. Then, to obtain the predefined modification level for intensity calibration, the cheese phantom images from kilo-voltage CT (kV CT), MVCBCT was acquired. From these cheese phantom images, the calibration table for MVCBCT images was defined from the relationship between Hounsfield Units (HUs) of kV CT and MVCBCT images at the same electron density plugs. The intensity of MVCBCT images from Rando phantom was calibrated using the predefined modification level as discussed above to have the intensity of the kV CT images to make the two images have the same intensity range as if they were obtained from the same modality. Finally, the dose calculation using kV CT, MVCBCT with/without intensity calibration was applied using radiation treatment planning system. As a result, the percentage difference of dose distributions between dose calculation based on kVCT and MVCBCT with intensity calibration was reduced comparing to the percentage difference of dose distribution between dose calculation based on kVCT and MVCBCT without intensity calibration. For head and neck, lung images, the percentage difference between kV CT and non-calibrated MVCBCT images was 1.08%, 2.44%, respectively. In summary, our method has quantitatively improved the accuracy of dose calculation and could be a useful solution to enhance the dose calculation accuracy using MVCBCT images.

Intensity Modulated Radiation Therapy Commissioning and Quality Assurance: Implementation of AAPM TG119 (세기조절방사선치료(IMRT)의 Commissioning 및 정도관리: AAPM TG119 적용)

  • Ahn, Woo-Sang;Cho, Byung-Chul
    • Progress in Medical Physics
    • /
    • v.22 no.2
    • /
    • pp.99-105
    • /
    • 2011
  • The purpose of this study is to evaluate the accuracy of IMRT in our clinic from based on TG119 procedure and establish action level. Five IMRT test cases were described in TG119: multi-target, head&neck, prostate, and two C-shapes (easy&hard). There were used and delivered to water-equivalent solid phantom for IMRT. Absolute dose for points in target and OAR was measured by using an ion chamber (CC13, IBA). EBT2 film was utilized to compare the measured two-dimensional dose distribution with the calculated one by treatment planning system. All collected data were analyzed using the TG119 specifications to determine the confidence limit. The mean of relative error (%) between measured and calculated value was $1.2{\pm}1.1%$ and $1.2{\pm}0.7%$ for target and OAR, respectively. The resulting confidence limits were 3.4% and 2.6%. In EBT2 film dosimetry, the average percentage of points passing the gamma criteria (3%/3 mm) was $97.7{\pm}0.8%$. Confidence limit values determined by EBT2 film analysis was 3.9%. This study has focused on IMRT commissioning and quality assurance based on TG119 guideline. It is concluded that action level were ${\pm}4%$ and ${\pm}3%$ for target and OAR and 97% for film measurement, respectively. It is expected that TG119-based procedure can be used as reference to evaluate the accuracy of IMRT for each institution.