• Title/Summary/Keyword: Distribution Structure

Search Result 6,221, Processing Time 0.041 seconds

Landscape Structure Analysis Based on Insect Spatial Distribution in Rural Area (곤충류 공간 분포를 활용한 농경지 경관구조 분석)

  • Lee, Dong-Kun;Yoon, Eun-Joo;Bae, Jung-Hoon
    • Journal of Korean Society of Rural Planning
    • /
    • v.14 no.1
    • /
    • pp.23-32
    • /
    • 2008
  • Landscape structure is important to understand a complex patterns and interaction with adjacent habitat in rural area. The aim of this study is to analyze relationship between landscape structure and insect spatial distribution in rural area to suggest applicable possibility of landscape structure as biological indicator. For this purpose, first, four landscape structure criteria such as distance from the forest; density of farmland-forest ecotone; landscape continuity; and field size are selected. Secondly, these criteria are applied to Gangsang-myeon, Yangpyeong-gun where mosaic feature are conserved at various spatial scale. Thirdly, application of landscape structure criteria is verified using correlation with species number, species diversity, and species richness of insect. As a result, it could be suggested that the landscape structure criteria are useful for explaining insect spatial distribution.

Probabilistic distribution of displacement response of frictionally damped structures excited by seismic loads

  • Lee, S.H.;Youn, K.J.;Min, K.W.;Park, J.H.
    • Smart Structures and Systems
    • /
    • v.6 no.4
    • /
    • pp.363-372
    • /
    • 2010
  • Accurate peak response estimation of a seismically excited structure with frictional damping system (FDS) is very difficult since the structure with FDS shows nonlinear behavior dependent on the structural period, loading characteristics, and relative magnitude between the frictional force and the excitation load. Previous studies have estimated the peak response of the structure with FDS by replacing a nonlinear system with an equivalent linear one or by employing the response spectrum obtained based on nonlinear time history and statistical analysis. In case that earthquake excitation is defined probabilistically, corresponding response of the structure with FDS becomes to have probabilistic distribution. In this study, nonlinear time history analyses were performed for the structure with FDS subjected to artificial earthquake excitation generated using Kanai-Tajimi filter. An equation for the probability density function (PDF) of the displacement response is proposed by adapting the PDF of the normal distribution. Coefficients of the proposed PDF are obtained by regression of the statistical distribution of the time history responses. Finally, the correlation between the resulting PDFs and statistical response distribution is investigated.

The Rao-Robson Chi-Squared Test for Multivariate Structure

  • Park, Cheol-Yong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.14 no.4
    • /
    • pp.1013-1021
    • /
    • 2003
  • Huffer and Park (2002) proposed a chi-squared test for multivariate structure. Their test detects the deviation of data from mutual independence or multivariate normality. We will compute the Rao-Robson chi-squared version of the test, which is easy to apply in practice since it has a limiting chi-squared distribution. We will provide a self-contained argument that it has a limiting chi-squared distribution. We study the accuracy in finite samples of the limiting distribution. We finally compare the power of our test with those of other popular normality tests in an application to a real data.

  • PDF

Analysis on the Induced Lightning Shielding Effect According to the Neutral Wire Installation Structure of a 22.9kV Distribution Line (22.9kV 배전선로 중성선 설치 구조에 따른 유도뢰 차폐효과 분석)

  • Kim, Jeom-Sik;Kim, Do-Young;Park, Yong-Beom
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.2
    • /
    • pp.191-196
    • /
    • 2010
  • The electricity distribution system in Korea is adopting a multi-grounding system. Protection of this distribution system against lightning is performed by installing overhead ground wires over the high voltage wires, and connecting the overhead ground wires to the ground every 200 m. The ground resistance in this system is limited not to exceed $50\Omega$ and overhead ground wire and neutral wire are multiple parallel lines. Although overhead ground wire and neutral wire are installed in different locations on the same pole, this circuit configuration has duplicated functions of providing a return path for unbalanced currents and protecting the distribution system against induced lightning. Therefore, the purpose of this study is to analyze the induced lightning shielding effect according to the neutral wire installation structure of a 22.9kV distribution line in order to present a new 22.9kV distribution line structure model and characteristics. This study calculated induced lightning voltage by performing numerical analysis when an overhead ground wire is present in the multi-grounding type 22.9kV distribution line structure, and calculated the induced lightning shielding effect based on this calculated induced lightning voltage. In addition, this study proposed and analyzed an improved distribution line model allowing the use of both overhead wire and neutral wire to be installed in the current distribution lines. The result of MATLAB simulation using the conditions applied by Yokoyama showed almost no difference between the induced lightning voltage developed in the current line and that developed in the proposed line. This signifies that shielding the induced lightning voltage through overhead wire makes no difference between current and proposed distribution line structures. That is, this study found that the ground resistance of the overhead wire had an effect on the induced lightning voltage, and that the induced lightning shielding effect of overhead wire is small.

다중 병렬판 구조의 변형률 분포해석

  • 김갑순;강대임;송후근;주진원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04a
    • /
    • pp.585-590
    • /
    • 1995
  • This paper describes strain distribution analysis of a multiple parallel plate structure for a multi-componenet force and moment sensor. A parallel plate structure which has higher rigidity than a simple beam structure are widely used for multi-component force and moment sensor. The strain distribution in the beams of a parallel plate structure should be accurately calculated to design a high precision multi-component force and moment sensor. We derived equations to calculate the strains for multiple parallel plate structure. It reveals that results from finite element analysis and experiment are in good agreement with results from the derived equations.

Evaluation of Characteristics for Stress Distribution on Cylindrical Beam Structure by Deformation and Restoration Process (변형 및 복원공정에 따른 실린더 형상 구조물의 응력분포 특성)

  • Park Chi-Yong;Kim Jin-Weon;Boo Myung-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.1 s.232
    • /
    • pp.132-138
    • /
    • 2005
  • In heavy industrial fields such as power plant and chemical plant, it is often necessary to restore damaged part of large machinery and structure which is installed in the hazard working place. In this paper, to estimate stress distribution which occurs during damage and restoration of cylindrical beam structure, the finite element technique has been used. A finite element model was verified by experiment for non deformed cylindrical beam structure. The displacements and elastic recovery have an excellent agreement between experiment and finite element analysis. The variations of stress distribution on deformation and restoration procedure for surfaces have been examined. The maximum von Mises stress appears in the surface for deformation and restoration procedure. In deformation procedure, the maximum stress occurs in the vicinity of support body. In restoration procedure, the maximum stress occurs in the vicinity of the fixing body. The fixing body allows avoiding stress concentration in adjacent support structure boundary.

Loop Current Calculation based on Voltage Angle Difference at Tie Switch for Switching Plan Validation in Distribution System Operation (상시개방점 양단전압 측정값을 이용한 배전선로 루프운전 가능 여부 판단 방법)

  • Son, Juhwan;Lim, Seongil
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.7
    • /
    • pp.14-21
    • /
    • 2015
  • Distribution systems are operated in radial structure, but temporal loop structure could be founded the live load transfer. Main purposes of reconfiguration of distribution network are load balancing, loss minimization and voltage drop maintaining. In the loop structure, huge loop current can be flowed between two substations in case of large voltage angle difference. Protection devices of distribution line can be triped by this huge loop current. So, precise calculation of loop current is very important for secure switching. This paper proposes a novel calculation method of loop current using the voltage angle differences measured at the tie switches. Feasibility of the propose method has been verified by various case studies based on Matlab simulation.

A Study on Optimum Distribution of Story Shear Force Coefficient for Seismic Design of Multi-story Structure

  • Oh, Sang Hoon;Jeon, Jongsoo
    • International Journal of High-Rise Buildings
    • /
    • v.3 no.2
    • /
    • pp.121-145
    • /
    • 2014
  • The story shear force distributions of most seismic design codes generally reflect the influences of higher vibration modes based on the elastic deformations of structures. However, as the seismic design allows for the plastic behavior of a structure, the story shear force distribution shall be effective after it is yielded due to earthquake excitation. Hence this study conducted numerical analyses on the story shear force distributions of most seismic design codes to find out the characteristics of how a structure is damaged between stories. Analysis results show that the more forces are distributed onto high stories, the lower its concentration is and the more energy is absorbed. From the results, this study proposes the optimum story shear force distribution and its calculation formula that make the damages uniformly distributed onto whole stories. Consequently, the story damage distribution from the optimum calculation formula was considerably more stable than existing seismic design codes.

A Study on the Cost Structure for Joint Logistics in Multi-Stage Distribution Chain of E-Commerce Environment (전자상거래상의 다단계 분배체계의 물류공동화를 위한 비용구조에 관한 연구)

  • 권방현
    • Journal of the Korea Society of Computer and Information
    • /
    • v.5 no.4
    • /
    • pp.200-210
    • /
    • 2000
  • Distribution Activity for customer is preferred at Physical distribution system in e-commerce, so fast delivery and low distribution cost determine the core competency of enterprise. Because there is no cooperative system between with distribution centers in traditional distribution system, it is difficult to optimize the system. The purpose of this paper is to propose a cost structure model for multi-stage distribution system, which is used for determination of joint lot size and optimal demand and transportation policy. It is expected to contribute to development of algorithm for joint distribution system, which is minimized the transportation cost by the result of this cost structure model.

  • PDF

The effect of varying peripheral bone structure and bone density on the occlusal stress distribution of human premolar regions (사람 소구치부위에서 주위골의 구조 및 밀도변화가 교합력에 의한 치아의 응력분포에 미치는 영향)

  • Suh, Ye-Joon;Shim, June-Sung;Lee, Keun-Woo;Chung, Moon-Kyu;Lee, Ho-Yong
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.19 no.1
    • /
    • pp.7-15
    • /
    • 2003
  • This study used FEM(Finite Element method) based on micro-CT images to see the effects of occlusal force distribution with varying bone density and structure. the mandibular premolar region from human cadaver, thickness of 10mm was imaged using micro-CT. the cross sectional images were taken every $10{\mu}m$. these were reconstructed and the longitudinal image at the mid point of mesiodistal of the speciman was obtained for the specimen for the FEM. The stress disribution produced by a vertical force at 100N and 100N horizontal were analyzed by MSC Nastran FEM Package. according to the result of this study the occlusal force distribution depends on the structure of cancellus bone and for further information on the occlusal force distribution on the tooth and the surrounding structure requires further studies on cancellus bone structure. CEJ of all model show the highest peak and region whice meet teeth and bone show second high peak. Original model and cortical bone add model show different stress distribution. Stress distribution changed according to bone structures and densities.