• Title/Summary/Keyword: Distribution Panel

Search Result 809, Processing Time 0.024 seconds

A parametric study on effects of pitting corrosion on stiffened panels' ultimate strength

  • Feng, Liang;Hu, Luocun;Chen, Xuguang;Shi, Hongda
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.699-710
    • /
    • 2020
  • Pitting corrosion commonly shaped in hull structure due to marine corrosive environment seriously causes the deterioration of structural performance. This paper deals with the ultimate strength behaviors of stiffened ship panels damaged by the pits subjected to uniaxial compression. A series of no-linear finite element analyses are carried out for three stiffened panels using ABAQUS software. Influences of the investigated typical parameters of pit degree (DOP), depth, location and distribution on the ultimate strength strength are discussed in detail. It is found that the ultimate strength is significantly reduced with increasing the DOP and pit depth and severely affected by the distribution. In addition, the pits including their distributions on the web have a slight effect on the ultimate strength. Compared with regular distribution, random one on the panel result in a change of collapse mode. Finally, an empirical formula as a function of corrosion volume loss is proposed for predicting the ultimate strength of stiffened panel.

The politic plan research for furniture industrial activation in the northern part of Gyeonggi-Province

  • Im, Kwang-Soon;Kim, Houn-Chul;Park, Byung-Dae
    • Journal of the Korea Furniture Society
    • /
    • v.21 no.6
    • /
    • pp.449-458
    • /
    • 2010
  • This study attempted to investigate the effect of panel thickness on the horizontal density distribution (HDD) of medium density fiberboard (MDF) in a destructive way. Full size MDF panels with five different thicknesses such as 2 mm, 4.5 mm, 9 mm, 18 mm and 30 mm were cut into two different specimen sizes, i.e., $500{\times}500\;mm$ and $120{\times}120\;mm$ to measure the HDD. In general, the overall density of MDF panel diminished as the thickness increased, showing the highest density for the thinnest MDF panels. The HDD variation was significant for the samples of smaller specimen size ($120{\times}120\;mm$). MDF panel thickness significantly influenced to the HDD, which increased as the thickness decreased. In addition, the thinner panels showed much wider range in the HDD than those of thicker panels. The coefficient of variation (COV) of HDD also followed a similar trend to the panel density as the thickness increased. In summary, MDF panel thickness had a significant impact on the HDD within a panel. The sample size also showed a considerable effect to the HDD of MDF panels.

  • PDF

The Prediction of Nozzle Trajectory on Substrate for the Improvement of Panel-Scale Etching Uniformity (에칭공정에서의 Panel-Scale Etching Uniformity 향상을 위한 에칭노즐 궤적예측에 관한 연구)

  • Jeong, Gi-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.160-160
    • /
    • 2008
  • In practical etching process, etch ant is sprayed on the metal-deposited panel through nozzles collectively connected to the manifold and that panel is usually composed of many PCB(printed circuit board)'s. The etching uniformity, the difference between individual PCB's on the same panel, has become one of most important features of etching process. In this paper, the prediction of nozzle trajectory has been performed by the combination of algebraic formula and numerical simulation. With the pre-determined geometrical factors of nozzle distribution, the trajectories of individual nozzles were predicted with the change of process operational factors such as panel speed, nozzle swing frequency and so on. As results, two dimensional distribution of impulsive force of etchant spray which could be considered as a key factor determining the etching performance have been successfully obtained. Though only qualitative prediction of etching uniformity have been predicted by the process developed in this study, the expansion to the quantitative prediction of etching uniformity is expected to be apparent by this study.

  • PDF

A spatial heterogeneity mixed model with skew-elliptical distributions

  • Farzammehr, Mohadeseh Alsadat;McLachlan, Geoffrey J.
    • Communications for Statistical Applications and Methods
    • /
    • v.29 no.3
    • /
    • pp.373-391
    • /
    • 2022
  • The distribution of observations in most econometric studies with spatial heterogeneity is skewed. Usually, a single transformation of the data is used to approximate normality and to model the transformed data with a normal assumption. This assumption is however not always appropriate due to the fact that panel data often exhibit non-normal characteristics. In this work, the normality assumption is relaxed in spatial mixed models, allowing for spatial heterogeneity. An inference procedure based on Bayesian mixed modeling is carried out with a multivariate skew-elliptical distribution, which includes the skew-t, skew-normal, student-t, and normal distributions as special cases. The methodology is illustrated through a simulation study and according to the empirical literature, we fit our models to non-life insurance consumption observed between 1998 and 2002 across a spatial panel of 103 Italian provinces in order to determine its determinants. Analyzing the posterior distribution of some parameters and comparing various model comparison criteria indicate the proposed model to be superior to conventional ones.

Test of Homogeneity for Intermittent Panel AR(1) Processes and Application (간헐적인 패널 1차 자기회귀과정들의 동질성 검정과 적용)

  • Lee, Sung Duck;Kim, Sun Woo;Jo, Na Rae
    • The Korean Journal of Applied Statistics
    • /
    • v.27 no.7
    • /
    • pp.1163-1170
    • /
    • 2014
  • The concepts and structure of intermittent panel time series data are introduced. We suggest a Wald test statistic for the test of homogeneity for intermittent panel first order autoregressive model and its limit distribution is derived. We consider the fitting the model with pooling data using sample mean at the time point if homogeneity for intermittent panel AR(1) is satisfied. We performed simulations to examine the limit distribution of the homogeneity test statistic for intermittent panel AR(1). In application, we fit the intermittent panel AR(1) for panel Mumps data and investigate the test of homogeneity.

Preparation and Characterization of High-purity Quartz Panel Using Wet-chemical Method (습식화학법을 이용한 고순도 석영유리 기판 제조 및 특성평가)

  • Park, Sung-Eun;Nam, Byeong-Uk;An, Jung-Sook;Shin, Ji-Shik;Oh, Han-Seog
    • Journal of the Semiconductor & Display Technology
    • /
    • v.6 no.4
    • /
    • pp.33-38
    • /
    • 2007
  • Quartz glass panel was prepared by a colloidal silica through the heat-treatment only without any additives in wet-chemical method. This colloidal silica used in slurry process has the uniform distribution of particle size and lower cost. The results show that 6N as a degree of purity and the 86 percentage of violet transmittance in 1mm thickness. AFM(Atomic Force Microscopy) pattern shows that the surface roughness are less than lnm. Also, we investigated the characteristic of quartz panel according to the concentration and distribution of hydroxyl group, viscosity and thermal expansion coefficient.

  • PDF

Estimation of Random Coefficient AR(1) Model for Panel Data

  • Son, Young-Sook
    • Journal of the Korean Statistical Society
    • /
    • v.25 no.4
    • /
    • pp.529-544
    • /
    • 1996
  • This paper deals with the problem of estimating the autoregressive random coefficient of a first-order random coefficient autoregressive time series model applied to panel data of time series. The autoregressive random coefficients across individual units are assumed to be a random sample from a truncated normal distribution with the space (-1, 1) for stationarity. The estimates of random coefficients are obtained by an empirical Bayes procedure using the estimates of model parameters. Also, a Monte Carlo study is conducted to support the estimation procedure proposed in this paper. Finally, we apply our results to the economic panel data in Liu and Tiao(1980).

  • PDF

Inverse Airfoil Design for Wind Turbine (역설계 기법을 이용한 풍력터빈 에어포일 형상 설계)

  • Ryu, Ki-Wahn;Park, Myoung-Ho
    • Journal of Wind Energy
    • /
    • v.4 no.2
    • /
    • pp.55-60
    • /
    • 2013
  • The mathematical implementation for inverse airfoil design of wind turbines is presented using vortex panel method based on assumptions of the two-dimensional incompressible potential flow. The vortex panel method employs linear distribution of the vortex strength to obtain the well converged solution. Stream function is adopted to get the basic formula for the inverse airfoil design, and a symmetric seed airfoil is given for initial data of the iteration approach. The final airfoil shape has been compared with the original airfoil shape for validation of the mathematical procedure.

Flow Analysis around a Wing Section by a Piecewise Linear Panel Method (부분선형 패널법을 이용한 2차원 날개단면 주위 유동 해석)

  • Park, Gi-Duck;Oh, Jin-An;Lee, Jin-Tae
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.5
    • /
    • pp.380-386
    • /
    • 2015
  • Panel methods are useful tools for analyzing fluid-flow around a wing section. It has the advantage of fast and accurate calculation, compared to other CFD Methods such as RANS solvers. This paper suggests a piecewise linear panel method in order to improve accuracy of existing panel methods by changing the piecewise constant singularity strength to linear singularity strength(for dipole strength). The piecewise linear panel method adopts the linear distribution of singularity strength, while control point is located at the node of each panel. Formulation of the piecewise linear panel method is given, and some calculation results are shown for typical wing sections.

Experimental Study on Transient Heating of the Glass Panel in the Infrared Heating Chamber

  • Lee, Kong-Hoon;Kim, Ook-Joong;Ha, Su-Seok
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.499-502
    • /
    • 2004
  • The temperature distribution of a glass plate heated in the infrared heating chamber has been investigated. Temperature of the glass panel is measured using a set of thermocouples and the optical pyrometer. Temperatures measured by thermocouples have good agreement with those by the pyrometer. The temperature uniformity of the panel is improved with wall reflectivity, which is one of the important factors to uniformly heat the panel

  • PDF