• Title/Summary/Keyword: Distributed-parameter system

Search Result 219, Processing Time 0.023 seconds

Development of an Real-time Multi-machine Power System Simulator using Personal Computers and Fast Ethernet (개인용 컴퓨터와 고속 이더넷을 이용한 다기 다모선 전력 시스템 실시간 시뮬레이터 개발에 관한 연구)

  • Kim, Joong-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.1
    • /
    • pp.63-68
    • /
    • 2009
  • As the complexity of the power system becomes higher, tests of the new devices, such as exciter and PCS(Power Conversion System) of the distributed generation sources, in the real operating condition are more important. However tests of the unverified devices in the real power system may cause hazardous malfunction of the system. In order to avoid this problem, power devices may be tested with the real-time simulators instead of the real power system. This paper presents an real-time multi machine power system simulator using PCs(Personal Computer) and Fast Ethernet. Developed real-time simulator performs the electro-mechanical dynamic simulation of multi-machine power system by the network distributed computing technique. Because the simulator consists of usual PCs and Fast Ethernet, it is possible to make up a simulation system very cheaper than the conventional real-time simulator which consists of dedicated expensive hardware devices. The performance of the developed simulator is tested and verified with the scaled model excitation system. The test which adjust the control parameters of the exciter is performed with the well-known New England 10 generator 39 bus sample power system.

BIFURCATIONS IN A HUMAN MIGRATION MODEL OF SCHEURLE-SEYDEL TYPE-II: ROTATING WAVES

  • Kovacs, Sandor
    • Journal of applied mathematics & informatics
    • /
    • v.16 no.1_2
    • /
    • pp.69-78
    • /
    • 2004
  • This paper treats the conditions for the existence of rotating wave solutions of a system modelling the behavior of students in graduate programs at neighbouring universities near each other which is a modified form of the model proposed by Scheurle and Seydel. We assume that both types of individuals are continuously distributed throughout a bounded two-dimension spatial domain of two types (circle and annulus), across whose boundaries there is no migration, and which simultaneously undergo simple (Fickian) diffusion. We will show that at a critical value of a system-parameter bifurcation takes place: a rotating wave solution arises.

Cooperative Strategies and Swarm Behavior in Distributed Autonomous Robotic Systems based on Artificial Immune System (인공면역 시스템 기반 자율분산로봇 시스템의 협조 전략과 군행동)

  • 심귀보
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.9 no.6
    • /
    • pp.627-633
    • /
    • 1999
  • In this paper, we propose a method of cooperative control (T-cell modeling) and selection of group behavior strategy (B-cell modeling) based on immune system in distributed autonomous robotic system (DARS). Immune system is living body's self-protection and self-maintenance system. These features can be applied to decision making of optimal swarm behavior in dynamically changing environment. For applying immune system to DARS, a robot is regarded as a ?3-cell, each environmental condition as an antigen, a behavior strategy as an antibody and control parameter as a T-cell respectively. When the environmental condition (antigen) changes, a robot selects an appropriate behavior strategy (antibody). And its behavior strategy is stimulated and suppressed by other robot using communication (immune network). Finally much stimulated strateby is adopted as a swarm behavior strategy. This control scheme is based on clonal selection and immune network hypothesis, and it is used for decision making of optimal swarm strategy. Adaptation ability of robot is enhanced by adding T-cell model as a control parameter in dynamic environments.

  • PDF

Multi-UAV Formation Algorithm Based on Distributed Control Using Swarm Intelligence (군집 지능을 이용한 분산 제어 기반 대형 형성 알고리즘)

  • Kim, Moon-Jung;Kim, Jeong-Hun;Kim, Hyo-Jung;Ryoo, Chang-Kyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.8
    • /
    • pp.523-530
    • /
    • 2022
  • Since the Multi-UAV system for various missions is more complex than a single UAV, an efficient formation control method is required. In wide-area search mission, there is a need for a distributed control for flexible formation that has a low burden of communication and computation and enables autonomous formation between UAVs. This paper proposes a flexible formation operation method that considers the swarm formation, the bank alignment formation, and the formation movement to expand the scan area and improve search performance. The algorithm has a vibration characteristic of the second-order system for a relative distance and can design an algorithm through parameter tuning. In addition, we converted control commands to suit conventional UAV systems and demonstrated the performance of algorithms for a formation and movement of a formation through simulation.

Mode III SIFs for interface cracks in an FGM coating-substrate system

  • Monfared, Mojtaba Mahmoudi
    • Structural Engineering and Mechanics
    • /
    • v.64 no.1
    • /
    • pp.71-79
    • /
    • 2017
  • In this study, interaction of several interface cracks located between a functionally graded material (FGM) layer and an elastic layer under anti-plane deformation based on the distributed dislocation technique (DDT) is analyzed. The variation of the shear modulus of the functionally graded coating is modeled by an exponential and linear function along the thickness of the layer. The complex Fourier transform is applied to governing equation to derive a system of singular integral equations with Cauchy type kernel. These equations are solved by a numerical method to obtain the stress intensity factors (SIFs) at the crack tips. The effects of non-homogeneity parameters for exponentially and linearly form of shear modulus, the thickness of the layers and the length of crack on the SIFs for several interface cracks are investigated. The results reveal that the magnitude of SIFs decrease with increasing of FG parameter and thickness of FGM layer. The values of SIFs for FGM layer with exponential form is less than the linear form.

Development of a Islanding Protection Algorithm for Distributed Resources (분산 전원의 고립 운전 진단 알고리즘 개발)

  • Jang, S.I.;Park, J.Y.;Kim, K.H.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.1287-1289
    • /
    • 2001
  • This paper presents the logic based islanding protection algorithm for distributed resources(DR) which are interconnected with distribution network. Due to the negative impacts from islanding operations of DR on protection, operation and management of distribution system, it is necessary to effectively detect the islanding operations of DR and disconnect it from distribution network rapidly. Generally, it is difficult to detect islanding operation by monitoring only one system parameter. The proposed islanding protection algorithm utilizes multi-criteria, voltage variation, phase displacement frequency variation, the variation of total harmonic distortion(THD) of current; therefore it effectively detects island operation of DR unit. We also verified the efficiency of the proposed algorithm using the radial distribution network of IEEE 34 bus model.

  • PDF

Statically compensated modal approximation of a class of distributed parameters systems

  • Imai, Jun;Wada, Kiyoshi;Sagara, Setsuo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.416-419
    • /
    • 1995
  • A finite-dimensional approximation technique is developed for a class of spectral systems with input and output operators which are unbounded. A corresponding bounding technique on the frequency-response error is also established for control system design. Our goal is to construct an uncertainty model including a nominal plant and its error bounds so that the results from robust linear control theory can be applied to guarantee a closed loop control performance. We demonstrate by numerical example that these techniques are applicable, with a modest computational burden, to a wide class of distributed parameter system plants.

  • PDF

Modeling and Simulation of Cantilevered Carbon-Nanotube Resonator with the Attached Mass (부착 질량을 가지는 탐침 탄소-나노튜브 공진기의 모델링 및 시뮬레이션)

  • Choi, Tae Ho;Lee, Jun Ha;Kim, Tae-Eun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.11 no.2
    • /
    • pp.81-84
    • /
    • 2012
  • Cantilevered carbon-nanotube-resonator was investigated via classical molecular dynamics simulations. The resonator system is including the attached nanocluster. A nanocluster with a finite length was modeling by some atomic rings. The mass of the nanocluster was equally distributed on the carbon atoms, composed of the atomic rings. The effective density factor, which could be considered as the single parameter affecting the resonance frequency shift, was significantly influenced by the mass, the position, and the linear density of the attached nanocluster. The linear density of the attached nanocluster was an important parameter to analyze the vibrational behavior of the CNT-resonator, including the attached nanocluster.

Frequency-dependent grounding impedance of the counterpoise based on the dispersed currents

  • Choi, Jong-Hyuk;Lee, Bok-Hee;Paek, Seung-Kwon
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.4
    • /
    • pp.589-595
    • /
    • 2012
  • When surges and electromagnetic pulses from lightning or power conversion devices are considered, it is desirable to evaluate grounding system performance as grounding impedance. In the case of large-sized grounding electrodes or long counterpoises, the grounding impedance is increased with increasing the frequency of injected current. The grounding impedance is increased by the inductance of grounding electrodes. This paper presents the measured results of frequency-dependent grounding impedance and impedance phase as a function of the length of counterpoises. In order to analyze the frequency-dependent grounding impedance of the counterpoises, the frequency-dependent current dissipation rates were measured and simulated by the distributed parameter circuit model reflecting the frequency-dependent relative resistivity and permittivity of soil. As a result, the ground current dissipation rate is proportional to the soil resistivity near the counterpoises in a low frequency. On the other hand, the ground current dissipation near the injection point is increased as the frequency of injected current increases. Since the high frequency ground current cannot reach the far end of long counterpoise, the grounding impedance of long counterpoise approaches that of the short one in the high frequency. The results obtained from this work could be applied in design of grounding systems.

An Analysis of the Frequency-Dependent Resultant Ground Impedance of Vertical Ground Electrodes Installed in Parallel (병렬로 시공된 수직 접지전극의 합성접지임피던스의 주파수의존성 분석)

  • Lee, Bok-Hee;Cho, Sung-Chul;Seong, Chang-Hoon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.2
    • /
    • pp.99-105
    • /
    • 2012
  • This paper deals with the experimental results of the frequency-dependent resultant ground impedance of vertical ground electrodes installed with a regular n-polygon. In order to propose an effective method of installing the vertically-driven multiple ground electrodes used to obtain the low ground impedance, the resultant ground impedance of ground electrodes installed with a regular n-polygon were measured as functions of the number of ground electrodes and the frequency of test currents and the results were discussed based on the potential interferences among ground electrodes. As a consequence, the effect of potential interference on the resultant ground impedance of vertical ground electrodes is frequency-dependent and it is significant in the low frequency of a few hundreds [Hz]. The resultant ground impedance of multiple vertical ground electrodes is not decreased in linearly proportion to the number of ground electrodes due to the overlapped potential interferences. Also the distributed-parameter circuit model considering the potential interference, the frequency-dependent relative permittivity and resistivity of soil was proposed. The simulated results of the frequency-dependent resultant ground impedance of multiple vertical ground electrodes are in good agreement with the measured data.