• Title/Summary/Keyword: Distributed video coding(DVC)

Search Result 53, Processing Time 0.016 seconds

Transcoding from Distributed Video Coding to H.264/AVC Based on Motion Vectors of Side Information (보조정보의 움직임 벡터를 이용한 분산 비디오 코딩에서 H.264/AVC로의 트랜스코딩)

  • Min, Kyung-Yeon;Yoo, Sung-Eun;Sim, Dong-Gyu;Jeon, Byeung-Woo
    • Journal of Broadcast Engineering
    • /
    • v.16 no.1
    • /
    • pp.108-122
    • /
    • 2011
  • In this paper, a transcoding method with low computational complexity and high coding efficiency is proposed to transcode distributed video coding (DVC) bitstreams to H.264/AVC ones. For the proposed high-performance transcoding with low complexity, not only Wyner-Ziv frames but also key frames can be transcoded with motion vectors estimated in generation of side information. As a motion vector is estimated from a key frame to a prior key frame for side information generation, the motion vector can be used to encode the intra key frame as a predicted frame. Motion estimation is performed with two predicted motion vectors. One is the motion vector from side information generation and the other is median of motion vectors of neighboring blocks. The proposed method selects the best motion vector between two motion vectors based on rate-distortion optimization. Coding efficiency can be improved with a small size of search range, because a motion vector estimated in side information generation is used as an initial motion vector for transcoding. In the experimental results, complexity of transcoder is reduced about 12% and bitrate performance increases about 28.7%.

Side Information Extrapolation Using Motion-aligned Auto Regressive Model for Compressed Sensing based Wyner-Ziv Codec

  • Li, Ran;Gan, Zongliang;Cui, Ziguan;Wu, Minghu;Zhu, Xiuchang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.2
    • /
    • pp.366-385
    • /
    • 2013
  • In this paper, we propose a compressed sensing (CS) based Wyner-Ziv (WZ) codec using motion-aligned auto regressive model (MAAR) based side information (SI) extrapolation to improve the compression performance of low-delay distributed video coding (DVC). In the CS based WZ codec, the WZ frame is divided into small blocks and CS measurements of each block are acquired at the encoder, and a specific CS reconstruction algorithm is proposed to correct errors in the SI using CS measurements at the decoder. In order to generate high quality SI, a MAAR model is introduced to improve the inaccurate motion field in auto regressive (AR) model, and the Tikhonov regularization on MAAR coefficients and overlapped block based interpolation are performed to reduce block effects and errors from over-fitting. Simulation experiments show that our proposed CS based WZ codec associated with MAAR based SI generation achieves better results compared to other SI extrapolation methods.

Efficient Motion Compensated Interpolation Technique Using Image Resizing (영상의 크기 변환을 이용한 효율적인 움직임 보상 보간 기법)

  • Kwon, Hye-Gyung;Lee, Chang-Woo
    • Journal of Broadcast Engineering
    • /
    • v.18 no.4
    • /
    • pp.599-608
    • /
    • 2013
  • Motion compensated interpolation (MCI) techniques are used for increasing the frame rate and generating the side information in the distributed video coding (DVC) system. In this paper, an efficient MCI technique using the image resizing in the DCT or LiftLT domain is proposed, and the performance of the MCI technique using various sub-pixel generation techniques is analyzed. Extensive computer simulations show that the proposed method produces the superior results compared to the conventional methods.