• Title/Summary/Keyword: Distributed sensing

Search Result 411, Processing Time 0.019 seconds

Reconstructed Iimage Quality Improvement of Distributed Compressive Video Sensing Using Temporal Correlation (시간 상관관계를 이용한 분산 압축 비디오 센싱 기법의 복원 화질 개선)

  • Ryu, Joong-seon;Kim, Jin-soo
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.22 no.2
    • /
    • pp.27-34
    • /
    • 2017
  • For The Purpose of Pursuing the Simplest Sampling, a Motion Compensated Block Compressed Sensing with Smoothed Projected Landweber (MC-BCS-SPL) has been Studied for an Effective Scheme of Distributed Compressive Video Sensing with all Compressed Sensing (CS) Frames. However, Conventional MC-BCS-SPL Scheme is Very Simple and so it Does not Provide Good Visual Qualities in Reconstructed Wyner-Ziv (WZ) Frames. In this Paper, the Conventional Scheme of MC-BCS-SPL is Modified to Provide Better Visual Qualities in WZ Frames. That is, the Proposed Agorithm is Designed in such a way that the Reference Frame may be Adaptively Selected Based on the Temporal Correlation Between Successive Frames. Several Experimental Results show that the Proposed Algorithm Provides Better Visual Qualities than Conventional Algorithm.

Cooperative Detection of Moving Source Signals in Sensor Networks (센서 네트워크 환경에서 움직이는 소스 신호의 협업 검출 기법)

  • Nguyen, Minh N.H.;Chuan, Pham;Hong, Choong Seon
    • Journal of KIISE
    • /
    • v.44 no.7
    • /
    • pp.726-732
    • /
    • 2017
  • In practical distributed sensing and prediction applications over wireless sensor networks (WSN), environmental sensing activities are highly dynamic because of noisy sensory information from moving source signals. The recent distributed online convex optimization frameworks have been developed as promising approaches for solving approximately stochastic learning problems over network of sensors in a distributed manner. Negligence of mobility consequence in the original distributed saddle point algorithm (DSPA) could strongly affect the convergence rate and stability of learning results. In this paper, we propose an integrated sliding windows mechanism in order to stabilize predictions and achieve better convergence rates in cooperative detection of a moving source signal scenario.

Enhanced Reputation-based Fusion Mechanism for Secure Distributed Spectrum Sensing in Cognitive Radio Networks (인지 라디오 네트워크에서 안전한 분산 스펙트럼 센싱을 위한 향상된 평판기반 퓨전 메커니즘)

  • Kim, Mi-Hui;Choo, Hyun-Seung
    • Journal of Internet Computing and Services
    • /
    • v.11 no.6
    • /
    • pp.61-72
    • /
    • 2010
  • Spectrum scarcity problem and increasing spectrum demand for new wireless applications have embossed the importance of cognitive radio technology; the technology enables the sharing of channels among secondary (unlicensed) and primary (licensed) users on a non-interference basis after sensing the vacant channel. To enhance the accuracy of sensing, distributed spectrum sensing is proposed. However, it is necessary to provide the robustness against the compromised sensing nodes in the distributed spectrum sensing. RDSS, a fusion mechanism based on the reputation of sensing nodes and WSPRT (weighted sequential probability ratio test), was proposed. However, in RDSS, the execution number of WSPRT could increase according to the order of inputted sensing values, and the fast defense against the forged values is difficult. In this paper, we propose an enhanced fusion mechanism to input the sensing values in reputation order and exclude the sensing values with the high possibility to be compromised, using the trend of reputation variation. We evaluate our mechanism through simulation. The results show that our mechanism improves the robustness against attack with the smaller number of sensing values and more accurate detection ratio than RDSS.

Computational analysis of the effect of SOI vertical slot optical waveguide specifications on integrated-optic biochemical waveguide wensitivity

  • Jung, Hongsik
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.6
    • /
    • pp.395-407
    • /
    • 2021
  • The effect of the specifications of a silicon-on-insulator vertical slot optical waveguide on the sensitivity of homogeneous and surface sensing configurations for TE and TM polarization, respectively, was systematically analyzed using numerical software. The specifications were optimized based on the confinement factor and transmission power of the TE-guided mode distributed in the slot. The waveguide sensitivities of homogeneous and surface sensing were calculated according to the specifications of the optimized slot optical waveguide.

Measurement of Distributed Temperature and Strain Using Raman OTDR with a Fiber Line Including Fiber Bragg Grating Sensors (광섬유 브래그 격자 센서가 있는 광섬유 라인에 라만 OTDR을 이용한 분포 온도 및 변형률 측정 가능성에 대한 연구)

  • Kwon, Il-Bum;Byeon, Jong-Hyun;Jeon, Min-Yong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.6
    • /
    • pp.443-450
    • /
    • 2016
  • In this study, we propose a novel fiber optic sensor to show the measurement feasibility of distributed temperature and strains in a single sensing fiber line. Distributed temperature can be measured using optical time domain reflectometry (OTDR) with a Raman anti-Stokes light in the sensing fiber line. Moreover, the strain can be measured by fiber Bragg gratings (FBGs) in the same sensing fiber line. The anti-Stokes Raman back-scattering lights from both ends of the sensing fiber, which consists of a 4 km single mode optical fiber, are acquired and inserted into a newly formulated equation to calculate the temperature. Furthermore, the center wavelengths from the FBGs in the sensing fiber are detected by an optical spectrum analyzer; these are converted to strain values. The initial wavelengths of the FBGs are selected to avoid a cross-talk with the wavelength of the Raman pulsed pump light. Wavelength shifts from a tension test were found to be 0.1 nm, 0.17 nm, 0.29 nm, and 0.00 nm, with corresponding strain values of $85.76{\mu}{\epsilon}$, $145.55{\mu}{\epsilon}$, $247.86{\mu}{\epsilon}$, and $0.00{\mu}{\epsilon}$, respectively. In addition, a 50 m portion of the sensing fiber from $30^{\circ}C$ to $70^{\circ}C$ at $10^{\circ}C$ intervals was used to measure the distributed temperature. In all tests, the temperature measurement accuracy of the proposed sensor was less than $0.50^{\circ}C$.

Fatigue characteristics of distributed sensing cables under low cycle elongation

  • Zhang, Dan;Wang, Jiacheng;li, Bo;Shi, Bin
    • Smart Structures and Systems
    • /
    • v.18 no.6
    • /
    • pp.1203-1215
    • /
    • 2016
  • When strain sensing cables are under long-term stress and cyclic loading, creep may occur in the jacket material and each layer of the cable structure may slide relative to other layers, causing fatigue in the cables. This study proposes a device for testing the fatigue characteristics of three types of cables operating under different conditions to establish a decay model for observing the patterns of strain decay. The fatigue characteristics of cables encased in polyurethane (PU), GFRP-reinforced, and wire rope-reinforced jackets were compared. The findings are outlined as follows. The cable strain decayed exponentially, and the decay process involved quick decay, slow decay, and stabilization stages. Moreover, the strain decay increased with the initial strain and tensile frequency. The shorter the unstrained period was, the more similar the initial strain levels of the strain decay curves were to the stabilized strain levels of the first cyclic elongation. As the unstrained period increased, the initial strain levels of the strain decay curves approached those of the first cyclic elongation. The tested sensing cables differed in the amount and rate of strain decay. The wire rope-reinforced cable exhibited the smallest amount and rate of decay, whereas the GFRP-reinforced cable demonstrated the largest.

BOTDA based water-filling and preloading test of spiral case structure

  • Cui, Heliang;Zhang, Dan;Shi, Bin;Peng, Shusheng
    • Smart Structures and Systems
    • /
    • v.21 no.1
    • /
    • pp.27-35
    • /
    • 2018
  • In the water-filling and preloading test, the sensing cables were installed on the surface of steel spiral case and in the surrounding concrete to monitor the strain distribution of several cross-sections by using Brillouin Optical Time Domain Analysis (BOTDA), a kind of distributed optical fiber sensing (DOFS) technology. The average hoop strain of the spiral case was about $330{\mu}{\varepsilon}$ and $590{\mu}{\varepsilon}$ when the water-filling pressure in the spiral case was 2.6 MPa and 4.1 MPa. The difference between the measured and the calculated strain was only about $50{\mu}{\varepsilon}$. It was the first time that the stress adjustment of the spiral case was monitored by the sensing cable when the pressure was increased to 1 MPa and the residual strain of $20{\mu}{\varepsilon}$ was obtained after preloading. Meanwhile, the shrinkage of $70{\sim}100{\mu}{\varepsilon}$ of the surrounding concrete was effectively monitored during the depressurization. It is estimated that the width of the gap between the steel spiral case and the surrounding concrete was 0.51 ~ 0.75 mm. BOTDA based distributed optical fiber sensing technology can obtain continuous strain of the structure and it is more reliable than traditional point sensor. The strain distribution obtained by BOTDA provides strong support for the design and optimization of the spiral case structure.

Performance Improvement of Distributed Compressive Video Sensing Using Reliability Estimation (신뢰성 예측을 이용한 분산 압축 비디오 센싱의 성능 개선)

  • Kim, Jin-soo
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.23 no.6
    • /
    • pp.47-58
    • /
    • 2018
  • Recently, remote sensing video applications have become increasingly important in many wireless networks. Distributed compressive video sensing (DCVS) framework in these applications has been studied to reduce encoding complexity and to simultaneously capture and compress video data. Specially, a motion compensated block compressed sensing with smoothed projected Landweber (MC-BCS-SPL) has been actively researched for one useful algorithm of DCVS schemes, However, conventional MC-BCS-SPL schemes do not provide good visual qualities in reconstructed Wyner-Ziv (WZ) frames. In this paper, the conventional schemes of MC-BCS-SPL are described and then upgraded to provide better visual qualities in WZ frames by introducing reliability estimate between adjacent key frames and by constructing efficiently motion-compensated interpolated frames. Through experimental results, it is shown that the proposed algorithm is effective in providing better visual qualities than conventional algorithm.

An Abnormal Breakpoint Data Positioning Method of Wireless Sensor Network Based on Signal Reconstruction

  • Zhijie Liu
    • Journal of Information Processing Systems
    • /
    • v.19 no.3
    • /
    • pp.377-384
    • /
    • 2023
  • The existence of abnormal breakpoint data leads to poor channel balance in wireless sensor networks (WSN). To enhance the communication quality of WSNs, a method for positioning abnormal breakpoint data in WSNs on the basis of signal reconstruction is studied. The WSN signal is collected using compressed sensing theory; the common part of the associated data set is mined by exchanging common information among the cluster head nodes, and the independent parts are updated within each cluster head node. To solve the non-convergence problem in the distributed computing, the approximate term is introduced into the optimization objective function to make the sub-optimization problem strictly convex. And the decompressed sensing signal reconstruction problem is addressed by the alternating direction multiplier method to realize the distributed signal reconstruction of WSNs. Based on the reconstructed WSN signal, the abnormal breakpoint data is located according to the characteristic information of the cross-power spectrum. The proposed method can accurately acquire and reconstruct the signal, reduce the bit error rate during signal transmission, and enhance the communication quality of the experimental object.

Novel Adaptive Distributed Compressed Sensing Algorithm for Estimating Channels in Doubly-Selective Fading OFDM Systems

  • Song, Yuming;He, Xueyun;Gui, Guan;Liang, Yan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.5
    • /
    • pp.2400-2413
    • /
    • 2019
  • Doubly-selective (DS) fading channel is often occurred in many orthogonal frequency division multiplexing (OFDM) communication systems, such as high-speed rail communication systems and underwater acoustic (UWA) wireless networks. It is challenging to provide an accurate and fast estimation over the doubly-selective channel, due to the strong Doppler shift. This paper addresses the doubly selective channel estimation problem based on complex exponential basis expansion model (CE-BEM) in OFDM systems from the perspective of distributed compressive sensing (DCS). We propose a novel DCS-based improved sparsity adaptive matching pursuit (DCS-IMSAMP) algorithm. The advantage of the proposed algorithm is that it can exploit the joint channel sparsity information using dynamic threshold, variable step size and tailoring mechanism. Simulation results show that the proposed algorithm achieves 5dB performance gain with faster operation speed, in comparison with traditional DCS-based sparsity adaptive matching pursuit (DCS-SAMP) algorithm.