To analyze the landslide susceptibility in Baekdu mountain area in china, we get two susceptibility maps using AcrView software through weighted overlay GIS (Geographic Information System) method in this paper. To assess the landslide susceptibility, five factors which affect the landslide occurrence were selected as: slope, aspect, soil type, geological type, and land use. The weight value and rating value of each factor were calculated by the two different methods of AHP (Analytic Hierarchy Process) and ANN (Artificial Neural Network). Then, the weight and rating value was used to obtain the susceptibility maps. Finally, the susceptibility map shows that the very dangerous areas (0.9 or higher) were mainly distributed in the mountainous areas around JiAnShi, LinJiangShi, and HeLongShi near the china-north Korea border and in the mountainous area between the WangQingXian and AnTuXian. From the contrast two susceptibility map, we also Knew that The accuracy of landslide susceptibility map drew by ANN method was better than AHP method.
침입 탐지 시스템은 침입 판정과 감사 데이터(audit data) 수집 분야에서 많은 연구가 진행되고 있다. 침입 판정은 주어진 일련의 행위들이 침입인지 아닌지를 정확히 판정해야 하고 감사 자료 수집에서는 침입 판정에 필요한 데이터만을 정확히 수집하는 능력이 필요하다 최근에 이러한 문제점을 해결하기 위해 규칙기반 시스템과 신경망 등의 인공지능적인 방법들이 도입되고 있다. 그러나 이러한 방법들은 단일 호스트 구조로 되어있거나 변형된 침입 패턴이 발생했을 때 탐지하지 못하는 단점이 있다. 따라서, 본 논문에서는 분산된 이기종 간의 호스트에서 사용자의 행위를 추출하여 패턴을 검색, 예측할 수 있는 데이터 마이닝을 적용하여 실시간으로 침입을 탐지하는 방법을 제안하고자 한다.
침입 탐지 시스템은 침입 판정과 감사 데이터(audit data) 수집 분야에서 많은 연구가 진행되고 있다. 침입 판정은 주어진 일련의 행위들이 침입인지 아닌지를 정확히 판정해야 하고 감사 자료 수집에서는 침입 판정에 필요한 데이터만을 정확히 수집하는 능력이 필요하다. 최근에 이러한 문제점을 해결하기 위해 규칙기반 시스템과 신경망 등의 인공지능적인 방법들이 도입되고 있다. 그러나 이러한 방법들은 단일 호스트 구조로 되어있거나 변형된 침입 패턴이 발생했을 때 탐지하지 못하는 단절이 있다. 따라서, 본 논문에서는 분산된 이기종 간의 호스트에서 사용자의 행위를 추출하여 패턴을 검색, 예측할 수 있는 데이터 마이닝 에이전트를 적용하여 실시간으로 침입을 탈지하는 방범을 제안하고자 한다.
멀티 에이전트 시스템은 분산적이고 개방적인 인터넷 환경에 잘 부합된다. 멀티 에이전트 시스템에서는 각 에이전트들이 자신의 목적을 위해 행동하기 때문에 에이전트간 충돌이 발생하는 경우에 조정을 통해 협력할 수 있어야 한다. 그러나 기존의 멀티 에이전트 시스템에서의 에이전트 간 협력 방법에 관한 연구 방법들은 동적 환경에서 서로 다른 목적을 갖는 에이전트간의 협동 문제를 올바로 해결할 수 없다는 문제가 있었다. 본 논문에서는 신경망과 강화학습을 이용하여 목적 패턴을 정확히 결정할 수 없는 복잡하고 동적인 환경하에서 멀티 에이전트의 자동조정 모델을 제안한다. 이를 위해 복잡한 환경과 다양한 행동을 갖는 멀티 에이전트간의 경쟁 실험을 통해 멀티 에이전트들의 행동의 영향을 분석 평가하여 제안한 방법이 타당함을 보였다.
This article deals with the application of reliability analysis for determining the safety of simply supported beam under the uniformly distributed load. The uncertainties of the existing methods were taken into account and hence reliability analysis has been adopted. To accomplish this aim, Generalized Regression Neural Network (GRNN), Extreme Learning Machine (ELM) and Gaussian Process Regression (GPR) models are developed. Reliability analysis is the probabilistic style to determine the possibility of failure free operation of a structure. The application of probabilistic mathematics into the quantitative aspects of a structure and improve the qualitative aspects of a structure. In order to construct the GRNN, ELM and GPR models, the dataset contains Modulus of Elasticity (E), Load intensity (w) and performance function (${\delta}$) in which E and w are inputs and ${\delta}$ is the output. The achievement of the developed models was weighed by various statistical parameters; one among the most primitive parameter is Coefficient of Determination ($R^2$) which has 0.998 for training and 0.989 for testing. The GRNN outperforms the other ELM and GPR models. Other different statistical computations have been carried out, which speaks out the errors and prediction performance in order to justify the capability of the developed models.
딥러닝 알고리즘 중 과거의 정보를 저장하는 문제(장기종속성 문제)가 있는 단순 RNN(Simple Recurrent Neural Network)의 단점을 해결한 LSTM(Long short-term memory)이 등장하면서 특정한 유역의 강우-유출 모형을 구축하는 연구가 증가하고 있다. 그러나 하나의 모형으로 모든 유역에 대한 유출을 예측하는 지역화 강우-유출 모형은 서로 다른 유역의 식생, 지형 등의 차이에서 발생하는 수문학적 행동의 차이를 학습해야 하므로 모형 구축에 어려움이 있다. 따라서, 본 연구에서는 국내 12개의 유역에 대하여 LSTM 기반 분포형 지역화 강우-유출 모형을 구축한 이후 강우 이외의 보조 자료에 따른 정확도를 살펴보았다. 국내 12개 유역의 7년 (2012.01.01-2018.12.31) 동안의 49개 격자(4km2)에 대한 10분 간격 레이더 강우, MODIS 위성 이미지 영상을 활용한 식생지수 (Normalized Difference Vegetation Index), 10분 간격 기온, 유역 평균 경사, 단순 하천 경사를 입력자료로 활용하였으며 10분 간격 유량 자료를 출력 자료로 사용하여 LSTM 기반 분포형 지역화 강우-유출 모형을 구축하였다. 이후 구축된 모형의 성능을 검증하기 위해 학습에 사용되지 않은 3개의 유역에 대한 자료를 활용하여 Nash-Sutcliffe Model Efficiency Coefficient (NSE)를 확인하였다. 식생지수를 보조 자료를 활용하였을 경우 제안한 모형은 3개의 검증 유역에 대하여 하천 흐름을 높은 정확도로 예측하였으며 딥러닝 모형이 위성 자료를 통하여 식생에 의한 차단 및 토양 침투와 같은 동적 요소의 학습이 가능함을 나타낸다.
Jung, Sungho;Le, Xuan Hien;Oh, Sungryul;Kim, Jeongyup;Lee, GiHa
한국수자원학회:학술대회논문집
/
한국수자원학회 2020년도 학술발표회
/
pp.166-166
/
2020
Recently, As the frequency of localized heavy rains increases, the use of high-resolution radar data is increasing. The produced radar rainfall has still gaps of spatial and temporal compared to gauge observation rainfall, and in many studies, various statistical techniques are performed for correct rainfall. In this study, the precipitation correction of the S-band Dual Polarization radar in use in the flood forecast was performed using the ConvAE algorithm, one of the Convolutional Neural Network. The ConvAE model was trained based on radar data sets having a 10-min temporal resolution: radar rainfall data, gauge rainfall data for 790minutes(July 2017 in Cheongju flood event). As a result of the validation of corrected radar rainfall were reduced gaps compared to gauge rainfall and the spatial correction was also performed. Therefore, it is judged that the corrected radar rainfall using ConvAE will increase the reliability of the gridded rainfall data used in various physically-based distributed hydrodynamic models.
분산 딥러닝은 각 노드에서 지역적으로 업데이트한 지역 파라미터를 동기화는 과정이 요구된다. 본 연구에서는 분산 딥러닝의 효과적인 파라미터 동기화 과정을 위해, 레이어 별 특성을 고려한 allreduce 통신과 연산 오버래핑(overlapping) 기법을 제안한다. 상위 레이어의 파라미터 동기화는 하위 레이어의 다음 전파과정 이전까지 통신/계산(학습) 시간을 오버랩하여 진행할 수 있다. 또한 이미지 분류를 위한 일반적인 딥러닝 모델의 상위 레이어는 convolution 레이어, 하위 레이어는 fully-connected 레이어로 구성되어 있다. Convolution 레이어는 fully-connected 레이어 대비적은 수의 파라미터를 가지고 있고 상위에 레이어가 위치하므로 네트워크 오버랩 허용시간이 짧고, 이를 고려하여 네트워크 지연시간을 단축할 수 있는 butterfly all-reduce를 사용하는 것이 효과적이다. 반면 오버랩 허용시간이 보다 긴 경우, 네트워크 대역폭을 고려한 ring all-reduce를 사용한다. 본 논문의 제안 방법의 효과를 검증하기 위해 제안 방법을 PyTorch 플랫폼에 적용하여 이를 기반으로 실험 환경을 구성하여 배치크기에 대한 성능 평가를 진행하였다. 실험을 통해 제안 기법의 학습시간은 기존 PyTorch 방식 대비 최고 33% 단축된 모습을 확인하였다.
스마트 팜 관리의 활용 효율성을 높이기 위해서는 작물 및 환경 변화에 대한 사전 검사를 실시간으로 평가하기 위한 모델링 기법이 필요하다. 시설 온실 내부의 CO2와 같은 필수 환경 요소는 다양한 상관 변수가 밀접하게 결합 된 시간 영역에서 신뢰할 수 있는 추정 모델을 확립하기가 어렵다. 따라서 본 연구는 입력 영역과 출력 변수를 CO2와 같은 시간 관점에서 인접 영역에 분포된 환경 정보를 이용하여 시간 복잡도를 줄이기 위한 인공 신경망을 개발하기 위해 수행되었다. 스마트 팜을 계측하기 위한 센서 모듈을 통해 환경 요소를 지속적으로 측정하였다. 실험기간의 평균 데이터로 예측하는 모델링 1, 전일 데이터로 예측하는 모델링 2을 구성하여 CO2 환경인자의 상호관계를 예측하였다. 전일의 데이터 학습으로 예측하는 모델링 2가 60일 평균값으로 예측한 모델링 1에 비해 성능이 우수하였다. 30일 이전까지는 대부분 0.70~0.88사이의 결정계수를 보였으며 모델링 2가 약0.05정도 높게 나타났다. 하지만 30일 이후에는 두 가지 모델링 모두 결정 계수 값이 0.50 이하로 낮은 값을 보였다. 모델링 접근법에 따라 결정 요인의 값을 비교하고 분석 한 결과 인접한 시간대의 데이터는 고정 신경망 모델을 사용하는 대신 예측이 필요한 지점에서 상대적으로 높은 성능을 나타냈다.
저수지는 국내 영농환경에서 주요한 용수 공급처이며, 저수지의 저수량 파악은 농업용수의 활용 및 관리차원에서 중요하다. 위성영상을 활용한 원격탐사는 저수지와 같이 광역적으로 분포하는 객체에 대하여 정기적인 모니터링을 할 수 있는 효과적인 수단으로, 본 연구에서는 Sentinel-1 Synthetic Aperture Radar (SAR) 영상을 통해 영상분류 및 영상분할 알고리즘을 적용하여 국내 저수지 53개소의 수표면적 탐지를 수행하였다. 사용한 알고리즘은 Neural Network (NN), Support Vector Machine (SVM), Random Forest (RF), Otsu, Watershed (WS), Chan-Vese (CV)로 총 6가지이며, 드론으로 촬영한 실측 정사영상으로 수표면적 탐지 결과를 평가하였다. 각 알고리즘으로부터 산출된 수표면적과 실측 수표면적간의 상관성은 NN 0.9941, SVM 0.9942, RF 0.9940, Otsu 0.9922, WS 0.9709, CV 0.9736로 나타났으며, 저수지 유효저수량의 규모가 클수록 더 높은 선형 상관관계를 보였다. 혼동 행렬로부터 산출한 정확도, 정밀도, 재현율을 통해 알고리즘간 수표면적 탐지 정확도와 탐지 경향을 분석하였다. 정확도의 경우 각 10만 m3 미만 저수지에서 WS가 0.8752, 10만~30만 m3에서 Otsu가 0.8845, 30만~50만 m3에서 RF가 0.9100, 50만 m3 이상에서 Otsu와 CV가 0.9400으로 가장 높은 수치를 보였다. WS의 경우 수표면적을 미탐지하는 경향으로 인해 낮은 재현율을 보였고, NN, SVM, RF의 경우 과대 탐지로 인한 낮은 정밀도를 보였다. SAR 영상을 통한 수표면적 탐지 시 저수지 수표면의 수생식물 및 인공건축물이 미탐지를 발생시키는 오차 요소로 작용함을 분석결과 및 실측영상을 통해 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.