• 제목/요약/키워드: Distributed generator

Search Result 204, Processing Time 0.023 seconds

Analysis and Design of FRT Detection System Using PMU (PMU를 사용한 FRT 검출시스템 설계 및 분석)

  • Kwon, Dae-Yun;Moon, Chae-Joo;Jeong, Moon-Seon;Yoo, Do-Kyeong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.4
    • /
    • pp.643-652
    • /
    • 2021
  • Accidents or faults in the transmission and distribution system are never completely avoidable, and short-circuit and earth faults are occurs despite the efforts of the TSO and DSO. Recently, the connection to the transmission and distribution system of large-capacity new and renewable distributed power has increased rapidly and has various effects on the operation of the system. In order to minimize this, connection standards such as FRT (Fault-Ride-Through) have been established to provide wind turbines or solar inverters. In the event of a major faults of the power system, the operation support shall be provided so that the operator can stably operate the system by smoothly performing connection maintenance or rapid system separation. In this paper, in order to appropriately determine whether the FRT condition, which is the grid connection criterion for a representative DERs, is sufficient, a detection system using a PMU (Phasor Measurement Unit) that measures a synchro-phasors was designed and deployment and a system accident due to a generator step-out to analyze and evaluate the proposed system based on the case.

Analysis of Changes in Power Generation of Each Power Generation Company by the Fine-Dust Seasonal Management System (미세먼지 계절관리제로 인한 발전사별 전력생산량 변화 분석)

  • Kim, Bu-Kwon;Won, Doo Hwan
    • Environmental and Resource Economics Review
    • /
    • v.30 no.4
    • /
    • pp.627-648
    • /
    • 2021
  • The fine-dust season management system refers to the policy of implementing enhanced reduction measures in transportation, power, business and living sectors in winter, when fine dust levels are high. The fine dust season management system is a regulatory policy that causes social costs and transfers to various economic players. Equity is an important issue for the cost burden. Therefore, in this study, the cost of each power generator was analyzed using the coal power generation reduction amount of each power generator to verify that the cost of the power sector is evenly distributed. In particular, the effect of the fine dust season management system on coal power generation of power generators was analyzed by applying a synthetic control method that can identify the time-variable effect of the policy. It was confirmed that the fine dust season management system reduced volume of fuel and power generation in coal power plants, resulting in an increase in the cost of the power generation sector, even considering the effect of some power demand due to the COVID-19 crisis. However, it could be seen that these costs were not distributed equally among the generators, and that they were more costly to the specific generators.Social costs incurred by fine dust season management need to be improved so that stakeholders are equally burdened.

Impact Assessment of Climate Change on Hydrologic Components and Water Resources in Watershed (기후변화에 따른 유역의 수문요소 및 수자원 영향평가)

  • Kim Byung Sik;Kim Hung Soo;Seoh Byung Ha;Kim Nam Won
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.143-148
    • /
    • 2005
  • The main purpose of this study is to suggest and evaluate an operational method for assessing the potential impact of climate change on hydrologic components and water resources of regional scale river basins. The method, which uses large scale climate change information provided by a state of the art general circulation model(GCM) comprises a statistical downscaling approach and a spatially distributed hydrological model applied to a river basin located in Korea. First, we construct global climate change scenarios using the YONU GCM control run and transient experiments, then transform the YONU GCM grid-box predictions with coarse resolution of climate change into the site-specific values by statistical downscaling techniques. The values are used to modify the parameters of the stochastic weather generator model for the simulation of the site-specific daily weather time series. The weather series fed into a semi-distributed hydrological model called SLURP to simulate the streamflows associated with other water resources for the condition of $2CO_2$. This approach is applied to the Yongdam dam basin in southern part of Korea. The results show that under the condition of $2CO_2$, about $7.6\% of annual mean streamflow is reduced when it is compared with the observed one. And while Seasonal streamflows in the winter and autumn are increased, a streamflow in the summer is decreased. However, the seasonality of the simulated series is similar to the observed pattern and the analysis of the duration cure shows the mean of averaged low flow is increased while the averaged wet and normal flow are decreased for the climate change.

  • PDF

Ensemble Daily Streamflow Forecast Using Two-step Daily Precipitation Interpolation (일강우 내삽을 이용한 일유량 시뮬레이션 및 앙상블 유량 발생)

  • Hwang, Yeon-Sang;Heo, Jun-Haeng;Jung, Young-Hun
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.3
    • /
    • pp.209-220
    • /
    • 2011
  • Input uncertainty is one of the major sources of uncertainty in hydrologic modeling. In this paper, first, three alternate rainfall inputs generated by different interpolation schemes were used to see the impact on a distributed watershed model. Later, the residuals of precipitation interpolations were tested as a source of ensemble streamflow generation in two river basins in the U.S. Using the Monte Carlo parameter search, the relationship between input and parameter uncertainty was also categorized to see sensitivity of the parameters to input differences. This analysis is useful not only to find the parameters that need more attention but also to transfer parameters calibrated for station measurement to the simulation using different inputs such as downscaled data from weather generator outputs. Input ensembles that preserves local statistical characteristics are used to generate streamflow ensembles hindcast, and showed that the ensemble sets are capturing the observed steamflow properly. This procedure is especially important to consider input uncertainties in the simulation of streamflow forecast.

An Optimization of the Distributed Generator Combination for Microgrid using Linear Programming (선형계획법을 이용한 마이크로그리드의 분산전원 조합 최적화)

  • Lee, Hak-Ju;Chae, Woo-Kyu;Jung, Won-Wook;Song, Il-Keun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.8
    • /
    • pp.133-141
    • /
    • 2010
  • MG(Microgrid) is a small power supply system located on-site that can supply both the electricity and the hot-water simultaneously. Engineering S/W is requested to construct Microgrids economically. We developed Engineering S/W that can combine DERs (Distributed Energy Resources) most economically using the linear programming and estimate of the economic. Developed S/W was programed using GAMS(General Algebraic Modeling System) and it is composed of the optimal DER combination module and forecasting module of renewable energy's output. We embody it based on MS Excel considering the user's convenience and we show its validity through a case study. We think that developed S/W will be very useful for planning MGs and energy supply.

Traffic Distributed Processing System Implementation on the Web Sever Networking (웹서버 네트워킹에서의 트래픽분산 처리 시스템 구현)

  • Park, Gil-Cheol;Sung, Kyung;Kim, Seok-Soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.4
    • /
    • pp.846-853
    • /
    • 2004
  • This paper introduces implementation of a traffic distributed processing system on the Web Sever Networking. The study used two software packages (Packet Capture and Round-Robin Test Package) to check packet quantity from Virtual Network Structure (data generator, virtual server, Serve. 1, 2, 3), and could find out traffic distribution toward Server 1, 2, and 3. The functions of implemented Round-Robin Load Balancing Monitoring System include Round-Robin testing, system monitoring, and graphical indication of data transmission/packet quantity (figures & diagram). As the result of the study shows, Round-Robin Algorithm ensured definite traffic distribution, unless incoming data loads differ much. Although error levels were high in some cases, they were eventually alleviated by repeated tests for a long period of time.

Analysis of Multi-Agent-Based Adaptive Droop-Controlled AC Microgrids with PSCAD: Modeling and Simulation

  • Li, Zhongwen;Zang, Chuanzhi;Zeng, Peng;Yu, Haibin;Li, Hepeng;Li, Shuhui
    • Journal of Power Electronics
    • /
    • v.15 no.2
    • /
    • pp.455-468
    • /
    • 2015
  • A microgrid (MG) with integrated renewable energy resources can benefit both utility companies and customers. As a result, they are attracting a great deal of attention. The control of a MG is very important for the stable operation of a MG. The droop-control method is popular since it avoids circulating currents among the converters without using any critical communication between them. Traditional droop control methods have the drawback of an inherent trade-off between power sharing and voltage and frequency regulation. An adaptive droop control method is proposed, which can operate in both the island mode and the grid-connected mode. It can also ensure smooth switching between these two modes. Furthermore, the voltage and frequency of a MG can be restored by using the proposed droop controller. Meanwhile, the active power can be dispatched appropriately in both operating modes based on the capacity or running cost of the Distributed Generators (DGs). The global information (such as the average voltage and output active power of the MG and so on) required by the proposed droop control method to restore the voltage and frequency deviations can be acquired distributedly based on the Multi Agent System (MAS). Simulation studies in PSCAD demonstrate the effectiveness of the proposed control method.

A Study on Fault Characteristics of Wind Power in Distribution Feeders (풍력발전(DFIG)의 고압배전선로의 사고특성 해석에 관한 연구)

  • Kim, So-Hee;Kim, Byung-Ki;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.3
    • /
    • pp.1288-1295
    • /
    • 2012
  • Korea Ministry of Knowledge Economy has estimated that wind power (WP) will be occupied 37% in 2020 and 42% in 2030 of the new energy sources, and also green energies such as photovoltaic (PV) and WP are expected to be interconnected with the distribution system because of Renewable Portfolio Standard (RPS) starting from 2012. However, when a large scale wind power plant (over 3[MW]) is connected to the traditional distribution system, protective devices (mainly OCR and OCGR of re-closer) will be occurred mal-function problems due to changed fault currents it be caused by Wye-grounded/Delta winding of interconnection transformer and %impedance of WP's turbine. Therefore, when Double-Fed Induction Generator (DFIG) of typical WP's Generator is connected into distribution system, this paper deals with analysis three-phase short, line to line short and a single line ground faults current by using the symmetrical components of fault analysis and PSCAD/EMTDC modeling.

A Study on Fault Characteristics of DFIG in Distribution Systems Based on the PSCAD/EMTDC (PSCAD/EMTDC를 이용한 풍력발전의 배전계통 사고특성에 관한 연구)

  • Son, Joon-Ho;Kim, Byung-Ki;Jeon, Jin-Taek;Rho, Dae-Seok
    • Journal of the Korea Convergence Society
    • /
    • v.2 no.2
    • /
    • pp.47-56
    • /
    • 2011
  • Korea Ministry of Knowledge Economy has estimated that wind power (WP) will be occupied 37% in 2020 and 42% in 2030 of the new energy sources, and also green energies such as photovoltaic (PV) and WP are expected to be interconnected with the distribution system because of Renewable Portfolio Standard (RPS) starting from 2012. However, when a large scale wind power plant (over 3[MW]) is connected to the traditional distribution system, protective devices (mainly OCR and OCGR of re-closer) will be occurred mal-function problems due to changed fault currents it be caused by Wye-grounded/Delta winding of interconnection transformer and %impedance of WP's turbine. Therefore, when Double-Fed Induction Generator (DFIG) of typical WP's Generator is connected into distribution system, this paper deals with analysis three-phase short, line to line short and a single line ground faults current by using the symmetrical components of fault analysis and PSCAD/EMTDC modeling.

Utility-Interactive Modulated Sinewave Inverter with a High Frequency Flyback Transformer Link for Small-Scale Solar Photovoltaic Generator

  • Konishi Y.;Chandhaket S.;Ogura K.;Nakaoka M.
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.683-686
    • /
    • 2001
  • This paper presents a novel prototype of the utility­interactive voltage source type sinewave pulse modulated power inverter using a high-frequency flyback transformer link. The proposed power conditioner circuit for the solar photovoltaic generation and small scale fuel cell has an isolation function due to the safety of the power processing system, which is more cost effective and acceptable for the small-scale distributed renewal energy conditioning and processing systems. The discontinuous current mode(DCM) of this power processing conversion circuit is applied to implement a simple circuit topology and pulse modulated control scheme. Its operation principle is described on the basis of simulation evaluations and theoretical considerations. The simulation results obtained herein prove that the proposed inverter outputs with sinusoidal waveforms and unity power factor currents are synchronized to the main voltage in utility power source grid. In this paper, the soft switching topology of high­frequency linked sinewave pulse modulation inverter is proposed and discussed.

  • PDF