• Title/Summary/Keyword: Distributed generation (DG)

Search Result 162, Processing Time 0.026 seconds

Optimal Capacity and Allocation Distributed Generation by Minimization Operation Cost of Distribution System (배전계통 운영비용의 최소화에 의한 분산전원의 최적 용량과 위치결정)

  • 배인수;박정훈;김진오;김규호
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.9
    • /
    • pp.481-486
    • /
    • 2004
  • In operation of distribution system, $DG_s$ Distributed Generations) are installed as an alternative of extension and establishment of substations and transmission and distribution lines according to increasing power demand. In operation planning of $DG_s$, determining optimal capacity and allocation gets economical pro(it and improves power reliability. This paper proposes determining a optimal number, size and allocation of $DG_s$ needed to minimize operation cost of distribution system. Capacity of $DG_s$ (or economical operation of distribution system estimated by the load growth and line capacity during operation planning duration, DG allocations are determined to minimize total cost with power buying cost. operation cost of DG, loss cost and outage cost using GA(Genetic Algorithm).

Simultaneous Planning of Renewable/ Non-Renewable Distributed Generation Units and Energy Storage Systems in Distribution Networks

  • Jannati, Jamil;Yazdaninejadi, Amin;Talavat, Vahid
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.2
    • /
    • pp.111-118
    • /
    • 2017
  • The increased diversity of different types of energy sources requires moving towards smart distribution networks. This paper proposes a probabilistic DG (distributed generation) units planning model to determine technology type, capacity and location of DG units while simultaneously allocating ESS (energy storage systems) based on pre-determined capacities. This problem is studied in a wind integrated power system considering loads, prices and wind power generation uncertainties. A suitable method for DG unit planning will reduce costs and improve reliability concerns. Objective function is a cost function that minimizes DG investment and operational cost, purchased energy costs from upstream networks, the defined cost to reliability index, energy losses and the investment and degradation costs of ESS. Electrical load is a time variable and the model simulates a typical radial network successfully. The proposed model was solved using the DICOPT solver under GAMS optimization software.

A Control and Protection Model for the Distributed Generation and Energy Storage Systems in Microgrids

  • Ballal, Makarand Sudhakar;Bhadane, Kishor V.;Moharil, Ravindra M.;Suryawanshi, Hiralal M.
    • Journal of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.748-759
    • /
    • 2016
  • The microgrid concept is a promising approach for injecting clean, renewable, and reliable electricity into power systems. It can operate in both the grid-connected and the islanding mode. This paper addresses the two main challenges associated with the operation of a microgrid i.e. control and protection. A control strategy for inverter based distributed generation (DG) and an energy storage system (ESS) are proposed to control both the voltage and frequency during islanding operation. The protection scheme is proposed to protect the lines, DG and ESS. Further, the control scheme and the protection scheme are coordinated to avoid nuisance tripping of the DG, ESS and loads. The feasibility of the proposed method is verified by simulation and experimental results.

A Study for Determining the Permissible Operating Range of Distributed Generation interconnected into Distribution System (배편계통에 도입되는 분산전원의 운전가능범위 결정에 관한 연구)

  • Kim, Tae-Eung;Kim, Jae-Eon
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.2
    • /
    • pp.93-101
    • /
    • 2002
  • This paper describes a new method for determining the permissible operating range of DG(Distributed Generation) when DG is introduced into power distribution systems of which the voltage is controlled by LDC(Line Drop Compensator). Much of the DG installed during the next millennium will be accomplished through the reconstruction of the electric power industry. But in that case, it is difficult to properly maintain the terminal voltage of low voltage customers by using only LDC. This paper presents a method for determining the permissible operating range of DG for proper voltage regulation of power distribution systems with LDC. Proposed method has been applied to a 22.9 kV model and practical distribution systems, and its result is almost identical with the simulation result.

Analytical Approach for Optimal Allocation of Distributed Generators to Minimize Losses

  • Kaur, Navdeep;Jain, Sanjay Kumar
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.6
    • /
    • pp.1582-1589
    • /
    • 2016
  • In this paper the integration of Distributed Generation (DG) in radial distribution system is investigated by computing the optimal site and size of DG to be placed. An analytical expression based on equivalent current injection has been derived by utilizing topological structure of radial distribution system to find optimal size of DG to minimize losses. In the presented formulation, the optimal DG placement is obtained without repeatedly computing the load flow. The proposed formulation can be used to find the optimal size of all types of DGs namely Type-I, Type-II, Type-III and Type-IV DGs. The investigations are carried out on IEEE 33-bus and 69-bus radial distribution systems. The optimal DG placement results into reduction in active and reactive power losses and improvement in voltage profile of the buses.

Correlation Analysis between Distributed Generation Maximum Hosting Capacity of Target and Non-Target Bus (목표 및 비 목표 모선의 분산전원 최대 Hosting capacity 간의 상관관계 분석)

  • Kim, Ji-Soo;Oh, Yun-Sik;Cho, Gyu-Jung;Kim, Min-Sung;Kim, Chul-Hwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.9
    • /
    • pp.1317-1324
    • /
    • 2017
  • These days, a penetration of distributed generation(DG) has increased in power system. Due to increased penetration of DG, a whole system is forced to install the maximum hosting capacity of DG. Therefore analysis between the maximum hosting capacity of DG at the target bus and the whole system is important. If we know the maximum hosting capacity, it will be able to satisfy the demand of system planner and customer. In this paper, we use a genetic algorithm to calculate the hosting capacity with optimization program using Design Analysis Kit for Optimization and Terascale Applications(DAKOTA). To consider a real system, we establish constraints and use IEEE 34 node test system. In addition, through the correlation coefficient between the target bus and the other buses, when capacity of DG at the target bus increases, we analyze which capacity of DG at the other buses will be decreased.

An Islanding Microgrid Power Sharing Approach Using Adaptive Virtual Impedance control scheme

  • Hoang, Van-Tuan;Lee, Hong-Hee
    • Proceedings of the KIPE Conference
    • /
    • 2016.07a
    • /
    • pp.315-316
    • /
    • 2016
  • This paper proposes an enhanced distributed generation (DG) unit with an adaptive virtual impedance control approachin order to address the inaccurate reactive power sharing problems. The proposed method can adaptively regulate the DG unit thanks to the equivalent impedance, andthe effect of the mismatch in feeder impedance is compensatedto share the reactive power accurately.The proposed control strategy can be implemented directly without any requirement of pre-knowledge of the feeder impedances. Simulations are performed to validate the effectiveness of the proposed control approach.

  • PDF

Application of Fault Location Method to Improve Protect-ability for Distributed Generations

  • Jang Sung-Il;Lee Duck-Su;Choi Jung-Hwan;Kang Yong-Cheol;Kang Sang-Hee;Kim Kwang-Ho;Park Yong-Up
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.2
    • /
    • pp.137-144
    • /
    • 2006
  • This paper proposes novel protection schemes for grid-connected distributed generation (DG) units using the fault location algorithm. The grid-connected DG would be influenced by abnormal distribution line conditions. Identification of the fault location for the distribution lines at the relaying point of DG helps solve the problems of the protection relays for DG. The proposed scheme first identifies fault locations using currents and voltages measured at DG and source impedance of distribution networks. Then the actual faulted feeder is identified, applying time-current characteristic curves (TCC) of overcurrent relay (OCR). The method considering the fault location and TCC of OCR might improve the performance of the conventional relays for DG. Test results show that the method prevents the superfluous operations of protection devices by discriminating the faulted feeder, whether it is a distribution line where DG is integrated or out of the line emanated from the substation to which the DGs are connected.

Power Losses Reduction via Simultaneous Optimal Distributed Generation Output and Reconfiguration using ABC Optimization

  • Jamian, Jasrul Jamani;Dahalan, Wardiah Mohd;Mokhlis, Hazlie;Mustafa, Mohd Wazir;Lim, Zi Jie;Abdullah, Mohd Noor
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.4
    • /
    • pp.1229-1239
    • /
    • 2014
  • Optimal Distributed Generation (DG) output and reconfiguration are among the well accepted approach to reduce power loss in a distribution network. In the past, most of the researchers employed optimal DG output and reconfiguration separately. In this work, a simultaneous DG output and reconfiguration analysis is proposed to maximize power loss reduction. The impact of the separated analysis and simultaneous analysis are investigated. The test result on the 33 bus distribution network with 3 units of DG operated in PV mode showed the simultaneous analysis gave the lowest power loss (global optimal) and faster results compared to other combined methods. All the analyses for optimizing the DG as well as reconfiguration are used the Artificial Bee Colony Optimization technique.

Dynamic model and simulation of microturbine generation system for islanding mode operation (마이크로터빈발전시스템 독립운전을 위한 동적 모델링 및 시뮬레이션)

  • Hong, Won-Pyo;Cho, Jea-Hoon
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.453-457
    • /
    • 2009
  • Distributed Generation (DG) is predicted to play a important role in electric power system in the near future. insertion of DG system into existing distribution network has great impact on real-time system operation and planning. It is widely accepted that micro turbine generation (MTG) systems are currently attracting lot of attention to meet customers need in the distributed power generation market. In order to investigate the performance of MT generation systems, their efficient modeling is required. This paper presents the modeling and simulation of a MT generation system suitable for isolated operation. The system comprises of a Permanent magnet synchronous generator driven by a MT. A brief description of the overall system is given, and mathematical models for the MT and permanent magnet synchronous generator are presented. Also, the use of power electronics in conditioning the power output of the generating system is demonstrated. Simulation studies with MATLAB/Simulink have been carried out in islanding operation mode of a DG system.

  • PDF