• 제목/요약/키워드: Distributed Temperature

검색결과 1,220건 처리시간 0.028초

건물화재시 연기층 형성과 영역모델에 관한 연구 (A Study on the Formation of Smoke Layer and the Zone modelling in Compartment Fire)

  • 허만성
    • 한국안전학회지
    • /
    • 제12권4호
    • /
    • pp.70-78
    • /
    • 1997
  • The objective of this research is to study on the upper and lower layer temperature, interface height and pressure in case of carpet, chair, trashcan and wardrobe fires in a residential room by performing the theoretical and experimental studies. The theoretical results of the upper and lower layer temperature, the interface height and the pressure were qualitatively well coincided with the experimental results. The uniformly distributed fire in case of carpet showed that the ignition and the initial growth period were relatively short while the fully developed period was considerably long. The concentrated fires such as the wardrobe showed that the ignitions and the initial growth periods were relatively long. The interface heights were around 1m as the steady state. However, at the time of the maximum temperature, the interface height was lowered to 0.5m from the floor. The pressure variation in the fire room ranged between 0.1mmAq and 0.4mmAq, and the temperature reached the highest while the pressure was maximum.

  • PDF

고상반응법에 의한 Fe-Al-Si-Ti-O계 써어미스터 소결체 합성 (Fabrication of Sintered Thermistor Body of Fe-Al-Si-O System by Solid Reaction Method)

  • 감기술;강기훈
    • 한국재료학회지
    • /
    • 제1권4호
    • /
    • pp.198-205
    • /
    • 1991
  • $Fe_2O_3,\;Al_2O_3,\;TiO_2$ 및 Si분말을 사용하여 고상반응법으로 써어미스터 소결체를 합성하였다. 합성된 소결체의 조식특성을 SEM으로 조사하고, 액체항온조에서 $-50~+50^{\circ}C$ 온도영역에서의 측정 결과 $\beta$상수가 972~4005K의 값을 갖는 써어미스터 소결체를 얻었다. 이 소결체는 고공기온측정을 위한 라디오존데용 온도센서로 사용될 수 있다.

  • PDF

고전고급제어(Conventional Advanced Control)를 이용한 TV 브라운관 유리 용해로의 온도제어에 관한 연구 (A Study on the Temperature Control of a TV-Glass Melting Furnace Using the Conventional Advanced Control)

  • 문은철;김흥식
    • 제어로봇시스템학회논문지
    • /
    • 제6권9호
    • /
    • pp.822-830
    • /
    • 2000
  • A conventional advanced control algorithm is proposed in this paper for improved temperature regulation of a TV-glass melting furnace. The TV-Glass melting furnace is a typical MIMO(Multi-Input Multi Output) system which is subject to various thermal disturbances. Because of its complexity, a detailed mathematical model of the furnace is hard to establish. To design a temperature control control system of the furnace, major input-output variables are selected first, and simple FOPDT(First Order Plus Dead Time) models are established based on the physical meaning and experimental process data. Based on the FOPDT models, a multi-loop control system composed of cascade and single loops are designed for effective control of the MIMO system. Practical implementation on the 150 ton/day furnace using the DCS(Distributed Control System) showed that the proposed control technique performs better than manual control.

  • PDF

Time harmonic interactions in non local thermoelastic solid with two temperatures

  • Lata, Parveen;Singh, Sukhveer
    • Structural Engineering and Mechanics
    • /
    • 제74권3호
    • /
    • pp.341-350
    • /
    • 2020
  • The present investigation is concerned with two dimensional deformation in a non local thermoelastic solid with two temperatures due to time harmonic sources. The nonlocal thermoelastic solid is homogeneous with the effect of two temperature parameters. Fourier transforms are used to solve the problem. The bounding surface is subjected to concentrated and distributed sources. The analytical expressions of displacement, stress components and conductive temperature are obtained in the transformed domain. Numerical inversion technique has been applied to obtain the results in the physical domain. Numerical simulated results are depicted graphically to show the effect of nonlocal parameter and frequency on the components of displacements, stresses and conductive temperature. Some special cases are also deduced from the present investigation.

벌크 비정질 합금의 초저온 소성 (Enhanced Plasticity of Bulk Amorphous Alloys at Cryogenic Temperature)

  • 윤규상;이미림;이재철
    • 대한금속재료학회지
    • /
    • 제48권8호
    • /
    • pp.699-704
    • /
    • 2010
  • We investigated the cryogenic temperature plasticity of a bulk amorphous alloy. Experiments showed that as temperature decreases, the plasticity of the alloy increases, such that the alloy exhibited ~20% of plastic strain when tested at $-196^{\circ}C$. This enhancement in the plasticity at cryogenic temperatures was associated with the formation of abundant shear bands distributed uniformly over the entire surface of the sample. Nonetheless, the serrations, the characteristic feature of the plastic deformation of amorphous alloys, were unclear at $-196^{\circ}C$. In this study, both the enhanced plasticity and the unclear serrations exhibited by the amorphous alloy at cryogenic temperatures were clarified by exploring shear banding behaviors in the context of the velocity and the viscosity of a propagating shear band.

Effect of nonlocal parameter on nonlocal thermoelastic solid due to inclined load

  • Lata, Parveen;Singh, Sukhveer
    • Steel and Composite Structures
    • /
    • 제33권1호
    • /
    • pp.123-131
    • /
    • 2019
  • The present investigation is concerned with two dimensional deformation in a homogeneous nonlocal thermoelastic solid with two temperature. The nonlocal thermoelastic solid is subjected to inclined load. Laplace and Fourier transforms are used to solve the problem. The bounding surface is subjected to concentrated and distributed sources. The analytical expressions of displacement, stress components, temperature change are obtained in the transformed domain. Numerical inversion technique has been applied to obtain the results in the physical domain. Numerical simulated results are depicted graphically to show the effect of angle of inclination and nonlocal parameter on the components of displacements, stresses and conductive temperature. Some special cases are also deduced from the present investigation.

Thomson Effect in Magneto-Thermoelastic Material with Hyperbolic two temperature and Modified Couple Stress Theory

  • Iqbal, Kaur;Kulvinder, Singh
    • Steel and Composite Structures
    • /
    • 제45권6호
    • /
    • pp.851-863
    • /
    • 2022
  • This research deals with the study of the Thomson heating effect in magneto-thermoelastic homogeneous isotropic rotating medium, influenced by linearly distributed load and as a result of modified couple stress theory. The charge density is taken as a function of the time of the induced electric current. The heat conduction equation with energy dissipation and with hyperbolic two-temperature (H2T) is used to formulate the model of the problem. Laplace and Fourier transforms are used to solve this mathematical model. Various components of displacement, temperature change, and axial stress as well as couple stress are obtained from the transformed domain. To get the solution in physical domain, numerical inversion techniques have been employed. The Thomson effect with GN (Green-Nagdhi) -III theory and Modified Couple Stress Theory (MCST) is shown graphically on the physical quantities.

Thermal-hydraulic behavior simulations of the reactor cavity cooling system (RCCS) experimental facility using Flownex

  • Marcos S. Sena;Yassin A. Hassan
    • Nuclear Engineering and Technology
    • /
    • 제55권9호
    • /
    • pp.3320-3325
    • /
    • 2023
  • The scaled water-cooled Reactor Cavity Cooling System (RCCS) experimental facility reproduces a passive safety feature to be implemented in Generation IV nuclear reactors. It keeps the reactor cavity and other internal structures in operational conditions by removing heat leakage from the reactor pressure vessel. The present work uses Flownex one-dimensional thermal-fluid code to model the facility and predict the experimental thermal-hydraulic behavior. Two representative steady-state cases defined by the bulk volumetric flow rate are simulated (Re = 2,409 and Re = 11,524). Results of the cavity outlet temperature, risers' temperature profile, and volumetric flow split in the cooling panel are also compared with the experimental data and RELAP system code simulations. The comparisons are in reasonable agreement with the previous studies, demonstrating the ability of Flownex to simulate the RCCS behavior. It is found that the low Re case of 2,409, temperature and flow split are evenly distributed across the risers. On the contrary, there's an asymmetry trend in both temperature and flow split distributions for the high Re case of 11,524.

Interactions in a transversely isotropic new modified couple stress thermoelastic thick circular plate with two temperature theory

  • Parveen Lata;Harpreet Kaur
    • Coupled systems mechanics
    • /
    • 제12권3호
    • /
    • pp.261-276
    • /
    • 2023
  • This article is an application of new modified couple stress thermoelasticity without energy dissipation in association with two-temperature theory. The upper and lower surfaces of the plate are subjected to an axisymmetric heat supply. The solution is found by using Laplace and Hankel transform techniques. The analytical expressions of displacement components, conductive temperature, stress components and couple stress are computed in transformed domain. Numerical inversion technique has been applied to obtain the results in the physical domain. Numerically simulated results are depicted graphically. The effect of two temperature is shown on the various components.

The nocturnal characteristics of Seoul city: Focused on light color

  • Sung Dae Hong
    • International Journal of Advanced Culture Technology
    • /
    • 제12권2호
    • /
    • pp.353-359
    • /
    • 2024
  • The color temperature and light color of nighttime lighting in a particular city is an important factor in determining its nighttime identity. To quantitatively analyze the nocturnal characteristics of Seoul, this study focuses on the light color of the lighting sources that used in the places included in the Seoul Night View 100 Photobook. As a result, the color temperature of white light in the surveyed places is in the range of 2,500~3,500K, of which 3,000~3,500K represents the highest proportion. In addition, the color temperature in the 2,500~3,500K range was found to be evenly distributed across the five surveyed regions. Apart from white light, blue color hue accounts for a high percentage in the monochromic light category, and the excitation purity was measured to be 71.6% on average. In addition, 46% of the buildings with monochromic light are in urban centers.