• Title/Summary/Keyword: Distributed Storage

Search Result 697, Processing Time 0.028 seconds

Performance Enhancement of Distributed File System as Virtual Desktop Storage Using Client Side SSD Cache (가상 데스크톱 환경에서의 클라이언트 SSD 캐시를 이용한 분산 파일시스템의 성능 향상)

  • Kim, Cheiyol;Kim, Youngchul;Kim, Youngchang;Lee, Sangmin;Kim, Youngkyun;Seo, Daewha
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.3 no.12
    • /
    • pp.433-442
    • /
    • 2014
  • In this paper, we introduce the client side cache of distributed file system for enhancing read performance by eliminating the network latency and decreasing the back-end storage burden. This performance enhancement can expand the fields of distributed file system to not only cloud storage service but also high performance storage service. This paper shows that the distributed file system with client side SSD cache can satisfy the requirements of VDI(Virtual Desktop Infrastructure) storage. The experimental results show that full-clone is more than 2 times faster and boot time is more than 3 times faster than NFS.

Randomized Block Size (RBS) Model for Secure Data Storage in Distributed Server

  • Sinha, Keshav;Paul, Partha;Amritanjali, Amritanjali
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.12
    • /
    • pp.4508-4530
    • /
    • 2021
  • Today distributed data storage service are being widely used. However lack of proper means of security makes the user data vulnerable. In this work, we propose a Randomized Block Size (RBS) model for secure data storage in distributed environments. The model work with multifold block sizes encrypted with the Chinese Remainder Theorem-based RSA (C-RSA) technique for end-to-end security of multimedia data. The proposed RBS model has a key generation phase (KGP) for constructing asymmetric keys, and a rand generation phase (RGP) for applying optimal asymmetric encryption padding (OAEP) to the original message. The experimental results obtained with text and image files show that the post encryption file size is not much affected, and data is efficiently encrypted while storing at the distributed storage server (DSS). The parameters such as ciphertext size, encryption time, and throughput have been considered for performance evaluation, whereas statistical analysis like similarity measurement, correlation coefficient, histogram, and entropy analysis uses to check image pixels deviation. The number of pixels change rate (NPCR) and unified averaged changed intensity (UACI) were used to check the strength of the proposed encryption technique. The proposed model is robust with high resilience against eavesdropping, insider attack, and chosen-plaintext attack.

A Real-time Video Playback Scheme in a Distributed Storage System Supporting File Sharing (파일 공유를 지원하는 분산 저장 시스템에서 실시간 비디오 재생 기법)

  • Eunsam Kim
    • Smart Media Journal
    • /
    • v.12 no.11
    • /
    • pp.145-153
    • /
    • 2023
  • In a P2P-based distributed storage system where peers frequently join and leave, it is essential to guarantee not only data availability but also playback quality comparable to that provided by local storage devices when playing back video files with real-time constraints. In addition, cloud storage services based on distributed storage systems provide each user with the functionality to share their files with other users, so when multiple users request playback of the same video file at the same time, all playback should be supported seamlessly in real time. Therefore, in this paper, we propose a scheme that process multiple simultaneous playback requests for each video file in real time as well as data availability in a P2P-based distributed storage system that supports file sharing. This scheme can support real-time simultaneous playback and efficiently use storage space by adjusting the amount of redundant data encoded through erasure coding according to the number of concurrent playback requests for each video file.

Optimal Heterogeneous Distributed Storage Regenerating Code at Minimum Remote-Repair Bandwidth Regenerating Point

  • Xu, Jian;Cao, Yewen;Wang, Deqiang;Wu, Changlei;Yang, Guang
    • ETRI Journal
    • /
    • v.38 no.3
    • /
    • pp.529-539
    • /
    • 2016
  • Recently, a product-matrix (PM) framework was proposed to construct optimal regenerating codes for homogeneous distributed storage systems (DSSs). In this paper, we propose an extended PM (EPM) framework for coding of heterogeneous DSSs having different repair bandwidths but identical storage capacities. Based on the EPM framework, an explicit construction of minimum remote-repair bandwidth regenerating (MRBR) codes is presented for a specific heterogeneous DSS, where two geographically different datacenters with associated storage nodes are deployed. The data reconstruction and regeneration properties of the MRBR code are proved strictly. For the purpose of demonstration, an example implementation of MRBR code is provided. The presented MRBR code is the first optimal strict-regenerating code for heterogeneous DSSs. In addition, our proposed EPM framework can be applied to homogeneous systems also.

Making Utility-Integrated Energy Storage a Used, Useful and Universal Resource

  • Doosan GridTech
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.4 no.1
    • /
    • pp.1-7
    • /
    • 2018
  • Objective signs are everywhere that the stationary energy storage market is growing up quickly. The use of distributed resources such as solar photovoltaics and electric vehicles are expanding at a rapid pace, creating technical challenges for the distribution system that will require energy storage and a new generation of software to address. This paper is intended for distribution utility managers and executives and makes the following points: ${\bullet}$ Utility-integrated (as opposed to merely grid-connected) energy storage projects represent a distinct, new wave of industry growth that is just getting underway and is required to manage distributed energy resources moving forward. ${\bullet}$ Utilities and the energy storage industry have important roles to lower risk in adopting this technology - thereby enabling this wave of growth. ${\circ}$ The industry must focus on engineering energy storage for adoption at scale - including the creation and support of software open standards -both to drive down costs and to limit technology and supplier risk for utilities. ${\circ}$ Utilities need to take a program-based, rather than a project- based, approach to this resource to best balance cost and risk as they procure and implement energy storage. By working together to drive down costs and manage risk, utilities and their suppliers can lay the energy storage foundation for a new, more digital distributed electricity system.

Effects of Electrolyte Concentration on Growth of Dendritic Zinc in Aqueous Solutions (수용액중 아연 덴드라이트의 성장 반응에 미치는 전해질 농도의 영향)

  • Shin, Kyung-Hee;Jung, Kyu-Nam;Yoon, Su-Keun;Yeon, Sun-Hwa;Shim, Joon-Mok;Joen, Jae-Deok;Jin, Chang-Soo;Kim, Yang-Soo;Park, Kyoung-Soo;Jeong, Soon-Ki
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.4
    • /
    • pp.390-396
    • /
    • 2012
  • In order to understand the nature of dendritic zinc growth, electrochemical zinc redox reaction on nickel plate was investigated in aqueous solutions containing different concentrations, 0.2, 0.1 and 0.02 $mol{\cdot}dm^{-3}$ (M), of zinc sulfate ($ZnSO_4$) or zinc chloride ($ZnCl_2$). Zinc ion was efficiently reduced and oxidized on nickel in the high-concentration (0.2 M) solution, whereas relatively poor efficiency was obtained from the other low-concentration solutions (0,1 and 0.02 M). Cyclic voltammetry (CV) analysis revealed that the 0.2 M electrolyte solution decomposes at more positive potentials than the 0.1 and the 0.02 M solutions. These results suggested that the concentration of electrolyte solution and anion would be an important factor that suppresses the reaction of the zinc dendrite formation. Scanning Electron Microscopy (SEM) data revealed that the shape of dendritic zinc and its growing behavior were also influenced by electrolyte concentration.

Optimized Design and Coordinated Control for Stand-alone DC Micro-grid (독립형 DC 마이크로그리드의 최적화 설계와 협조적 제어)

  • Han, Tae-Hee;Lee, Ji-Heon;Kim, Hyun-Jun;Han, Byung-Moon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.63-71
    • /
    • 2013
  • This paper describes the coordinated droop control method for stand-alone type DC micro-grid to improve reliability and utilization of distributed generations and energy storage. The stand-alone type DC micro-grid consists of several distributed generations such as a wind power generation, solar power and micro-turbine, and energy storage. The proposed method which is based on autonomous control method shows high reliability and stability through coordinated droop control of distributed generations and energy storage and also capability of battery management. The operation of stand-alone type DC micro-grid was analyzed using detail simulation model with PSCAD/EMTDC software. Based on simulation results, a hardware simulator was built and tested with commercially available components and performance of system was verified.

Verification Test of Failover Recovery Technique based on Software-Defined RAID (Software-Defined RAID 기반 장애복구 기법과 실증 테스트)

  • Cha, ByungRae;Choi, MyeongSoo;Park, Sun;Kim, JongWon
    • Smart Media Journal
    • /
    • v.5 no.1
    • /
    • pp.69-77
    • /
    • 2016
  • This paper proposes a software defined storaging method to converge the network virtualization technique and the RAID of distributed storage environment. The proposed method designs software based storage which it apply a flexible control and maintenance of storages. In addition, the method overcomes the restricted of physical storage capacity and cut costs of data recovery. The proposed failover recovery technique based on Software-Defined RAID has been tested the substantial verification and the performance using public AWS and Google Storage.

Minimum Bandwidth Regenerating Codes Based on Cyclic VFR Codes

  • Wang, Jing;Wang, Shuxia;Wang, Tiantian;Zhang, Xuefei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.7
    • /
    • pp.3583-3598
    • /
    • 2019
  • In order to improve the reliability and repair efficiency of distributed storage systems, minimum bandwidth regenerating (MBR) codes based on cyclic variable fractional repetition (VFR) codes are constructed in this thesis, which can repair failed nodes accurately. Specifically, in order to consider the imbalance of data accessed by the users, cyclic VFR codes are constructed according to that data with different heat degrees are copied in different repetition degrees. Moreover, we divide the storage nodes into groups, and construct MBR codes based on cyclic VFR codes to improve the file download speed. Performance analysis and simulation results show that, the repair locality of a single node failure is always 2 when MBR codes based on cyclic VFR codes are adopted in distributed storage systems, which is obviously superior to the traditional MBR codes. Compared with RS codes and simple regenerating codes, the proposed MBR codes based on cyclic VFR codes have lower repair locality, repair complexity and bandwidth overhead, as well as higher repair efficiency. Moreover, relative to FR codes, the MBR codes based on cyclic VFR codes can be applicable to more storage systems.

A Scheme on High-Performance Caching and High-Capacity File Transmission for Cloud Storage Optimization (클라우드 스토리지 최적화를 위한 고속 캐싱 및 대용량 파일 전송 기법)

  • Kim, Tae-Hun;Kim, Jung-Han;Eom, Young-Ik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.8C
    • /
    • pp.670-679
    • /
    • 2012
  • The recent dissemination of cloud computing makes the amount of data storage to be increased and the cost of storing the data grow rapidly. Accordingly, data and service requests from users also increases the load on the cloud storage. There have been many works that tries to provide low-cost and high-performance schemes on distributed file systems. However, most of them have some weaknesses on performing parallel and random data accesses as well as data accesses of frequent small workloads. Recently, improving the performance of distributed file system based on caching technology is getting much attention. In this paper, we propose a CHPC(Cloud storage High-Performance Caching) framework, providing parallel caching, distributed caching, and proxy caching in distributed file systems. This study compares the proposed framework with existing cloud systems in regard to the reduction of the server's disk I/O, prevention of the server-side bottleneck, deduplication of the page caches in each client, and improvement of overall IOPS. As a results, we show some optimization possibilities on the cloud storage systems based on some evaluations and comparisons with other conventional methods.