• Title/Summary/Keyword: Distributed Scheduling

Search Result 295, Processing Time 0.022 seconds

An Efficient Scheduling Method Taking into Account Resource Usage Patterns on Desktop Grids (데스크탑 그리드에서 자원 사용 경향성을 고려한 효율적인 스케줄링 기법)

  • Hyun Ju-Ho;Lee Sung-Gu;Kim Sang-Cheol;Lee Min-Gu
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.33 no.7
    • /
    • pp.429-439
    • /
    • 2006
  • A desktop grid, which is a computing grid composed of idle computing resources in a large network of desktop computers, is a promising platform for compute-intensive distributed computing applications. However, due to reliability and unpredictability of computing resources, effective scheduling of parallel computing applications on such a platform is a difficult problem. This paper proposes a new scheduling method aimed at reducing the total execution time of a parallel application on a desktop grid. The proposed method is based on utilizing the histories of execution behavior of individual computing nodes in the scheduling algorithm. In order to test out the feasibility of this idea, execution trace data were collected from a set of 40 desktop workstations over a period of seven weeks. Then, based on this data, the execution of several representative parallel applications were simulated using trace-driven simulation. The simulation results showed that the proposed method improves the execution time of the target applications significantly when compared to previous desktop grid scheduling methods. In addition, there were fewer instances of application suspension and failure.

Applying TMO-Based Object Group Model to Area of Distributed Real-Time Applications and Its Analysis (분산 실시간 응용 분야에 TMO 기반 객체그룹 모델의 적용 및 분석)

  • 신창선;정창원;주수종
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.31 no.8
    • /
    • pp.432-444
    • /
    • 2004
  • In this paper, we construct the TMO-based object group model on distributed environment, and analyze and evaluate the executability for distributed real-time service of our object group model by developing the distributed real-time application simulator applying the model. The Time-triggered Message-triggered Object(TMO) is a real-time server object having real-time property itself. The TMO-based object group is defined as a set of objects which logically reconfigured the physically distributed one or more TMOs on network by a given distributed application. For supporting group management of the server objects, the TMO-based object group we suggested provides the functions which register and withdraw the solver objects as a group member to an arbitrary object group, and also provides the functions which insert and delete the access rights of server objects from clients. Also, our model was designed and implemented to support the appropriate object selection and dynamic binding service for a single TMO as well as the duplicated TMOs, and to support the real-time scheduling service for the clients which are requesting the service. Finally, we developed the Defence System against Invading Enemy Planes(DSIEP) simulator as a practical example of distributed real-time application by applying our model, and evaluated the adaptability of distributed service strategies for the group components and the executability of real-time services that the TMO-based object group model provides.

Distributed Coordination of Project Schedule Changes by Using Software Agents (소프트웨어 에이전트를 이용한 건설공사 공정관리의 분산화)

  • Kim Kee-soo
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • autumn
    • /
    • pp.85-90
    • /
    • 2002
  • In the construction industry, projects are becoming increasingly large and complex, involving multiple subcontractors. Traditional centralized coordination techniques used by the general contractors become less effective as subcontractors perform most work and provide their own resources. When subcontractors cannot provide enough resources, they hinder their own performance as well as that of other subcontractors and ultimately the entire project. Thus, construction projects need a new distributed coordination approach wherein all of the concerned subcontractors can reschedule a project dynamically. To enable the new distributed coordination of project schedule changes, I developed a novel agent-based compensatory negotiation methodology, which allows software agents to simulate negotiations on behalf of their human subcontractors. This research formalizes the necessary steps that would help construction project participants to increase the efficiency of their resource use, which in turn will enhance successful completions of whole projects.

  • PDF

A Personal Digital Library on a Distributed Mobile Multiagents Platform (분산 모바일 멀티에이전트 플랫폼을 이용한 사용자 기반 디지털 라이브러리 구축)

  • Cho Young Im
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.12
    • /
    • pp.1637-1648
    • /
    • 2004
  • When digital libraries are developed by the traditional client/sever system using a single agent on the distributed environment, several problems occur. First, as the search method is one dimensional, the search results have little relationship to each other. Second, the results do not reflect the user's preference. Third, whenever a client connects to the server, users have to receive the certification. Therefore, the retrieval of documents is less efficient causing dissatisfaction with the system. I propose a new platform of mobile multiagents for a personal digital library to overcome these problems. To develop this new platform I combine the existing DECAF multiagents platform with the Voyager mobile ORB and propose a new negotiation algorithm and scheduling algorithm. Although there has been some research for a personal digital library, I believe there have been few studies on their integration and systemization. For searches of related information, the proposed platform could increase the relationship of search results by subdividing the related documents, which are classified by a supervised neural network. For the user's preference, as some modular clients are applied to a neural network, the search results are optimized. By combining a mobile and multiagents platform a new mobile, multiagents platform is developed in order to decrease a network burden. Furthermore, a new negotiation algorithm and a scheduling algorithm are activated for the effectiveness of PDS. The results of the simulation demonstrate that as the number of servers and agents are increased, the search time for PDS decreases while the degree of the user's satisfaction is four times greater than with the C/S model.

A Development of Distributed Dual Real-Time Kernel System (분산 이중 실시간 커널 시스템의 개발)

  • 인치호
    • The Journal of Information Technology
    • /
    • v.4 no.2
    • /
    • pp.25-36
    • /
    • 2001
  • In this paper, we present the development of distributed dual real-time kernel system. This paper proposed that real-time applications should be split into small and simple parts with real-time constraints, Following this concept we have designed to preserve the properties of both hard real-time kernel and general kernel. To satisfy these properties, we designed real-time kernel and general kernel, that have their different properties. In real-time tasks, interrupt processing should be un. In general kernel, non real-time tasks or general tasks are run. We compared the results of this study for performance of the proposal real-time kernel with both RT Linux 0.5a and QNX 4.23A, that is, of interrupt latency scheduling precision and message passing.

  • PDF

High-throughput and low-area implementation of orthogonal matching pursuit algorithm for compressive sensing reconstruction

  • Nguyen, Vu Quan;Son, Woo Hyun;Parfieniuk, Marek;Trung, Luong Tran Nhat;Park, Sang Yoon
    • ETRI Journal
    • /
    • v.42 no.3
    • /
    • pp.376-387
    • /
    • 2020
  • Massive computation of the reconstruction algorithm for compressive sensing (CS) has been a major concern for its real-time application. In this paper, we propose a novel high-speed architecture for the orthogonal matching pursuit (OMP) algorithm, which is the most frequently used to reconstruct compressively sensed signals. The proposed design offers a very high throughput and includes an innovative pipeline architecture and scheduling algorithm. Least-squares problem solving, which requires a huge amount of computations in the OMP, is implemented by using systolic arrays with four new processing elements. In addition, a distributed-arithmetic-based circuit for matrix multiplication is proposed to counterbalance the area overhead caused by the multi-stage pipelining. The results of logic synthesis show that the proposed design reconstructs signals nearly 19 times faster while occupying an only 1.06 times larger area than the existing designs for N = 256, M = 64, and m = 16, where N is the number of the original samples, M is the length of the measurement vector, and m is the sparsity level of the signal.

On Opportunistic Beamforming with Multiple-User Selection (오퍼튜니스틱 다중 빔 형성 시스템의 사용자 선택에 따른 성능 향상)

  • Ku, Mi-Hyeon;Kim, Dong-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.2A
    • /
    • pp.130-138
    • /
    • 2008
  • In this paper, we propose a user selection method to maximize the sum-rate of downlink over opportunistic beamforming. The throughput of an opportunistic beamforming with non-uniformly distributed or a small number of users can decrease. In order to improve the throughput, we propose a scheduling method that does not use SINR or SNR but uses the effective channel gain of each user obtained from the SINR or SNR feedback. The proposed method makes it possible to select users flexibly according to the distribution of users. In numerical results, we show that the proposed methods improve the average sum-rate about 60% when users are distributed non uniformly.

Scate: A Scalable Time and Energy Aware Actor Task Allocation Algorithm in Wireless Sensor and Actor Networks

  • Sharifi, Mohsen;Okhovvat, Morteza
    • ETRI Journal
    • /
    • v.34 no.3
    • /
    • pp.330-340
    • /
    • 2012
  • In many applications of wireless sensor actor networks (WSANs) that often run in harsh environments, the reduction of completion times of tasks is highly desired. We present a new time-aware, energy-aware, and starvation-free algorithm called Scate for assigning tasks to actors while satisfying the scalability and distribution requirements of WSANs with semi-automated architecture. The proposed algorithm allows concurrent executions of any mix of small and large tasks and yet prevents probable starvation of tasks. To achieve this, it estimates the completion times of tasks on each available actor and then takes the remaining energies and the current workloads of these actors into account during task assignment to actors. The results of our experiments with a prototyped implementation of Scate show longer network lifetime, shorter makespan of resulting schedules, and more balanced loads on actors compared to when one of the three well-known task-scheduling algorithms, namely, the max-min, min-min, and opportunistic load balancing algorithms, is used.

Low-Complexity Distributed Algorithms for Uplink CoMP in Heterogeneous LTE Networks

  • Annavajjala, Ramesh
    • Journal of Communications and Networks
    • /
    • v.18 no.2
    • /
    • pp.150-161
    • /
    • 2016
  • Coordinated multi-point transmission (CoMP) techniques are being touted as enabling technologies for interference mitigation in next generation heterogeneous wireless networks (HetNets). In this paper, we present a comparative performance study of uplink (UL) CoMP algorithms for the 3GPP LTE HetNets. Focusing on a distributed and functionally-split architecture, we consider six distinct UL-CoMP algorithms: 1. Joint reception in the frequency-domain (JRFD) 2. Two-stage equalization (TSEQ) 3. Log-likelihood ratio exchange (LLR-E) 4. Symmetric TSEQ (S-TSEQ) 5. Transport block selection diversity (TBSD) 6. Coordinated scheduling with adaptive interference mitigation (CS-AIM) where JRFD, TSEQ, S-TSEQ, TBSD and CS-AIM are our main contributions in this paper, and quantify their relative performances via the post-processing signal-to-interference-plus-noise ratio distributions.We also compare the CoMP-specific front-haul rate requirements for all the schemes considered in this paper. Our results indicate that, with a linear minimum mean-square error receiver, the JRFD and TSEQ have identical performances, whereas S-TSEQ relaxes the front-haul latency requirements while approaching the performance of TSEQ. Furthermore, in a HetNet environment, we find that CS-AIM provides an attractive alternative to TBSD and LLR-E with a significantly reduced CoMP-specific front-haul rate requirement.

Implementation of Real-Time Communication in CAN for a Humanoid Robot (CAN 기반 휴머노이드 로봇의 실시간 데이터 통신 구현)

  • Kwon Sun-Ku;Kim Byung-Yoon;Kim Jin-Hwan;Huh Uk-Youl
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.1
    • /
    • pp.24-30
    • /
    • 2006
  • The Controller Area Network (CAN) is being widely used for real-time control application and small-scale distributed computer controller systems. When the stuff bits are generated by bit-stuffing mechanism in the CAN network, it causes jitter including variations in response time and delay In order to eliminate this jitter, stuff bits must be controlled to minimize the response time and to reduce the variation of data transmission time. This paper proposes the method to reduce the stuff bits by restriction of available identifier and bit mask using exclusive OR operation. This da manipulation method are pretty useful to the real-time control strategy with respect to performance. However, the CAN may exhibit unfair behavior under heavy traffic conditions. When there are both high and low priority messages ready for transmission, the proposed precedence priority filtering method allows one low priority message to be exchanged between any two adjacent higher priority messages. In this way, the length of each transmission delays is upper bounded. These procedures are implemented as local controllers for the ISHURO(Inha Semvung Humanoid Robot).