• Title/Summary/Keyword: Distillation boundary

Search Result 6, Processing Time 0.019 seconds

Numerical study of desalination by Sweeping Gas Membrane Distillation

  • Loussif, Nizar;Orfi, Jamel
    • Membrane and Water Treatment
    • /
    • v.11 no.5
    • /
    • pp.353-361
    • /
    • 2020
  • The present study deals with a numerical investigation of heat and mass transfer in a Sweeping Gas Membrane Distillation (SGMD) used for desalination. The governing equations expressing the conservation of mass, momentum, energy and species with coupled boundary conditions were solved numerically. The slip boundary condition applied on the feed saline solution-hydrophobic membrane interface is taken into consideration showing its effects on profiles and process parameters.The numerical model was validated with available experimental data and was found to be in good agreement particularly when the slip condition is considered. The results of the simulations highlighted the effect of slip boundary condition on the velocity and temperature distributions as well as the process effectiveness. They showed in particular that as the slip length increases, the permeate flux of fresh water and process thermal efficiency rise.

Application of Energy-Efficient Distillation System in Ethanol Process (에너지 절약형 증류시스템의 에탄올 제조공정에의 응용)

  • Lee, Moon Yong;Kim, Young Han
    • Korean Chemical Engineering Research
    • /
    • v.46 no.5
    • /
    • pp.892-897
    • /
    • 2008
  • A new ethanol dehydration process utilizing a thermally coupled distillation column is proposed to reduce the energy requirement of the existing dehydration processes. An entrainer of benzene is used in the proposed system having the column profile similar to the equilibrium composition profile for the maximum distillation column efficiency, and the feed composition is arranged to close to the boundary of different distillation regions. It is found that the proposed distillation system gives some 18% of energy saving over the existing process. In addition, design guidelines are suggested for other azeotropic distillation process.

Shot Boundary Detection Model using Knowledge Distillation (지식의 증류기법을 이용한 샷 경계 검출 모델)

  • Park, Sung Min;Yoon, Ui Nyoung;Jo, Geun-Sik
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2019.06a
    • /
    • pp.29-31
    • /
    • 2019
  • 샷 경계 검출(Shot Boundary Detection)은 영상 콘텐츠 분석을 위한 필수적인 기술이며, 다양한 방식으로 편집된 영상의 샷 경계를 정확하게 검출하기 위한 연구가 지속되어 왔다. 그러나 기존에 연구들은 고정된 샷 경계 검출 알고리즘이나 매뉴얼한 작업과 같이 학습이 불가능한 과정이 포함되어 있어 성능 개선에 한계가 있었다. 본 논문에서는 이러한 과정을 제거한 End-to-End 모델을 제안한다. 제안하는 모델은 시공간 정보 추출성능을 높이기 위해 행동 인식 데이터셋을 이용한 전이학습을 사용하고, 샷 경계 검출 성능을 높이기 위해 개선된 지식의 증류기법(Knowledge Distillation)을 결합한다. 제안하는 모델은 ClipShots 데이터셋에서 DeepSBD 에 비해 cut transition 과 gradual transition 이 각각 5.4%, 41.29% 높은 성능을 보였고, DSM 과의 비교에서 cut transition 의 정확도가 1.3% 더 높은 결과를 보였다.

  • PDF

Steady State Design for the Separation of Acetone-Chloroform Maximum Boiling Azeotrope Using Three Different Solvents

  • Pokhrel, Manish;Owusu, Asante Daniel;Cho, Jungho
    • Korean Chemical Engineering Research
    • /
    • v.55 no.4
    • /
    • pp.490-496
    • /
    • 2017
  • We have designed an extractive distillation for separating maximum boiling azeotrope of acetone-chloroform system. PRO/II 9.4 was used to simulate the overall process. The VLE data adopted from Dortmund data bank was regressed to obtain a new set of binary interaction parameters. Three different entrainers were used for the separation process--dimethyl sulfoxide (DMSO), ethylene glycol (EG) and benzene--to test their viability for the acetone-chloroform system. Thermodynamic feasibility analysis was done through ternary map diagrams. Two different thermodynamic models, NRTL and UNIQUAC, were explored for the study of overall process.

Neural Network Model Compression Algorithms for Image Classification in Embedded Systems (임베디드 시스템에서의 객체 분류를 위한 인공 신경망 경량화 연구)

  • Shin, Heejung;Oh, Hyondong
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.2
    • /
    • pp.133-141
    • /
    • 2022
  • This paper introduces model compression algorithms which make a deep neural network smaller and faster for embedded systems. The model compression algorithms can be largely categorized into pruning, quantization and knowledge distillation. In this study, gradual pruning, quantization aware training, and knowledge distillation which learns the activation boundary in the hidden layer of the teacher neural network are integrated. As a large deep neural network is compressed and accelerated by these algorithms, embedded computing boards can run the deep neural network much faster with less memory usage while preserving the reasonable accuracy. To evaluate the performance of the compressed neural networks, we evaluate the size, latency and accuracy of the deep neural network, DenseNet201, for image classification with CIFAR-10 dataset on the NVIDIA Jetson Xavier.

Heat and mass transfer analysis in air gap membrane distillation process for desalination

  • Pangarkar, Bhausaheb L.;Sane, Mukund G.
    • Membrane and Water Treatment
    • /
    • v.2 no.3
    • /
    • pp.159-173
    • /
    • 2011
  • The air gap membrane distillation (AGMD) process was applied for water desalination. The main objective of the present work was to study the heat and mass transfer mechanism of the process. The experiments were performed on a flat sheet module using aqueous NaCl solutions as a feed. The membrane employed was hydrophobic PTFE of pore size 0.22 ${\mu}m$. A mathematical model is proposed to evaluate the membrane mass transfer coefficient, thermal boundary layers' heat transfer coefficients, membrane / liquid interface temperatures and the temperature polarization coefficients. The mass transfer model was validated by the experimentally and fitted well with the combined Knudsen and molecular diffusion mechanism. The mass transfer coefficient increased with an increase in feed bulk temperature. The experimental parameters such as, feed temperature, 313 to 333 K, feed velocity, 0.8 to 1.8 m/s (turbulent flow region) were analyzed. The permeation fluxes increased with feed temperature and velocity. The effect of feed bulk temperature on the boundary layers' heat transfer coefficients was shown and fairly discussed. The temperature polarization coefficient increased with feed velocity and decreased with temperature. The values obtained were 0.56 to 0.82, indicating the effective heat transfer of the system. The fouling was observed during the 90 h experimental run in the application of natural ground water and seawater. The time dependent fouling resistance can be added in the total transport resistance.