• Title/Summary/Keyword: Distillation Design

Search Result 83, Processing Time 0.029 seconds

Rational Design of Extractive Distillation Toward Enhanced Separation of HFPO from HFP/HFPO Mixture

  • Lee, Yongtaek
    • Clean Technology
    • /
    • v.24 no.1
    • /
    • pp.15-20
    • /
    • 2018
  • Hexafluoropropyleneoxide ($C_3F_6O$, HFPO) is highly expensive and it may be used as a raw material for the synthesis of various fluorine based compounds. Currently, extractive distillation method has gained considerable attention to collect the HFPO from a mixture of HFPO / hexafluoropropylene ($C_3F_6$, HFP). Optimized operating conditions are studied using a theoretical method for the extraction process. Among available solvents for the purification process, the use of 1,1-dichloro-1-fluoroethane exhibits a high purity of HFPO as a top product and minimize the required heat duty. Since the boiling point of the solvent increases as the pressure in the column increases, the enhanced extractive capability of the solvent led to the high purity of HFPO at the high pressure.

ON THE DEVELOPMENT OF A DISTILLATION PROCESS FOR THE ELECTROMETALLURGICAL TREATMENT OF IRRADIATED SPENT NUCLEAR FUEL

  • Westphal, Brian R.;Marsden, Kenneth C.;Price, John C.;Laug, David V.
    • Nuclear Engineering and Technology
    • /
    • v.40 no.3
    • /
    • pp.163-174
    • /
    • 2008
  • As part of the spent fuel treatment program at the Idaho National Laboratory, a vacuum distillation process is being employed for the recovery of actinide products following an electrorefining process. Separation of the actinide products from a molten salt electrolyte and cadmium is achieved by a batch operation called cathode processing. A cathode processor has been designed and developed to efficiently remove the process chemicals and consolidate the actinide products for further processing. This paper describes the fundamentals of cathode processing, the evolution of the equipment design, the operation and efficiency of the equipment, and recent developments at the cathode processor. In addition, challenges encountered during the processing of irradiated spent nuclear fuel in the cathode processor will be discussed.

Study on Control Efficiency of Thermally Coupled Distillation Column for Reformate Fractionation Process (Reformate 분리공정에서의 열복합 증류탑 제어구조에 관한 연구)

  • Lee, Ju-Yeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.8
    • /
    • pp.3774-3778
    • /
    • 2012
  • A dynamic simulation of a fully thermally coupled distillation is conducted for the design of a possible operation scheme, and its performance is examined with an example process of reformate fractionation process. The outcome of the dynamic simulation indicates that the column can be operated by using a $3{\times}3$ control structure. The structure consists of three controlled variables of the compositions of overhead, side products and bottom and three manipulated variables of the flow rate of reflux, liquid split ratio between a main column and a prefractionator and steam.

STUDY OF INTERNAL RECYCLE DISTRIBUTION AND HEAT TRANSFER EFFECT FOR OPTIMAL DESIGN OF DIVIDING WALL DISTILLATION COLUMNS

  • Lee, Ki-Hong;Lee, Moon-Yong;Jeong, Seong-Oh
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2319-2324
    • /
    • 2003
  • This paper addresses the optimal design of dividing wall distillation column which is rapidly applied in a variety of chemical processes over recent several years because of its high energy saving efficiency. A general dividing wall column model which can cope with the heat transfer through the dividing wall is developed using rigorous computer simulation. Based on the simulation model, the effects of the internal recycle flow distribution around the dividing wall and the heat transfer across the dividing wall on overall system performance are investigated. An improved method is suggested to utilize the heat transfer through the wall to optimal column design. The suggested method is compared with the existing method via. simulation study and shows more improved energy saving result. Several control strategies for the divided wall column are tested and the optimal control strategy is propose

  • PDF

Distillation design and optimization of quaternary azeotropic mixtures for waste solvent recovery

  • Chaniago, Yus Donald;Lee, Moonyong
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.67
    • /
    • pp.255-265
    • /
    • 2018
  • The huge amount of solvents used in the semi-conductor and display industry typically result in waste of valuable solvents which often form complex azeotropic mixtures. This study explored a recovery process of a quaternary waste solvent, comprising methyl 2-hydroxybutyrate, propylene glycol monomethyl ether acetate, ethyl lactate, and ethyl-3-ethoxy propionate. In this study, a novel shortcut column method with a graphical approach was exploited for the distillation column design of complex quaternary azeotropic mixtures. As a result, the proposed shortcut method and design procedure solved the complex separation paths successfully with less computational efforts while achieving all requirements for component purity.

A Study on the Development of a Cryogenic Air Separation Unit to Produce High Purity Nitrogen (고순도 질소생산용 초저온 공기분리장치 개발 연구)

  • 용평순;문흥만;이성철
    • Progress in Superconductivity and Cryogenics
    • /
    • v.3 no.1
    • /
    • pp.69-73
    • /
    • 2001
  • For developing the cryogenic air separation unit, it requires some technology such as basic process design. equipment design and manufacturing based on the cryogenic physical properties and separation theory. In this study, we developed a process and equipment for producing high purity nitrogen which has the production capacity of 1600N㎥/h under 1 ppm $O_2$ and $H_2O$. Also we found that the number of theoretical plate(NTP) of distillation column was 44 and maximum nitrogen recovery ration of this process was 42% from the process simulation. The performance test was also carried out for the nitrogen recovery ratio and equipment efficiency. The results showed that the optimum nitrogen recovery was 41% and the maximum equipment efficiency was attained.

  • PDF

Process Design of Low Energy Azeotropic and Extractive Distillation Process for Bioethanol Recovery (바이오에탄올 회수를 위한 에너지 절약형 공비증류공정과 추출증류공정)

  • Kim, Jong Hwan;Lee, Doug Hyung;Hong, Sung Kyu;Park, Sang Jin
    • Korean Chemical Engineering Research
    • /
    • v.46 no.2
    • /
    • pp.348-355
    • /
    • 2008
  • Recently, an understanding of new sources of liquid hydrocarbons such as bio-ethanol is economically very important. The present dissertation is also designed with purpose of developing the energy-saving process for the separation of bio-ethanol. In order to illustrate the predictability of proposed process for the separation of bio-ethanol, the experimental data from literatures and real plant data are used. Application of the thermodynamics of multicomponent mixtures and phase equilibria to the extractive distillation process with syntheses of heat exchanger network has enabled the development of energy-saving process for different separating agents. Developed process is capable of minimizing the energy usage and the environmental effect. This extractive process is also able to properly describe the effect of impurities, the choice of separating agent. Simulation results of extractive distillation using ethylene glycol show that impurities do not affect to extractive distillation operation and agent, ethylene glycol, was recycled without any loss. It is possible that extraction distillation has various heat network for anhydride ethanol and recovery of ethanol is maximized. Ethylene glycol as separating agent has a high boiling point to eliminate azeotropic point and on the contrary solubility of agent is low to be almost completed recovered. Proposed process is also the energy efficient process configuration in which 99.85mole% anhydride ethanol can be produced with low energy of 1.37198 (kg steam/kg anhydride ethanol).

Advanced Membrane Systems for Seawater Desalination. Kinetics of Salts Crystallization from RO Brines Promoted by Polymeric Membranes

  • Curcio, Efrem;Obaidani, Sulaiman Al;Macedonio, Francesca;Profio, Gianluca Di;Gualtieri, Silvia;Drioli, Enrico
    • Membrane Journal
    • /
    • v.17 no.2
    • /
    • pp.93-98
    • /
    • 2007
  • The reliability of innovative membrane contactors technology (i.e. Gas/Liquid Membrane Contactors, Membrane Distillation/Crystallization) is today increasing for seawater desalination processes, where traditional pressure-driven membrane separation units are routinely operated. Furthermore, conventional membrane operations can be integrated with membrane contactors in order to promote possible improvements in process efficiency, operational stability, environmental impact, water quality and cost. Seawater is the most abundant aqueous solution on the earth: the amount of dissolved salts covers about 3% of its composition, and six elements (Na, Mg, Ca, K, Cl, S) account for more than 90% of ionic species. Recent investigations on Membrane Distillation-Crystallization have shown the possibility to achieve significant overall water recovery factors, to limit the brine disposal problem, and to recover valuable salts (i.e. calcium sulphate, sodium chloride, magnesium sulphate) by combining this technology with conventional RO trains. In this work, the kinetics of $CaSO_4{\cdot}2H_2O,\;NaCl\;and\;MgSO_4{\cdot}7H_2O$ crystallization is experimentally investigated in order to improve the design of the membrane-based crystallization unit.

Emerging membrane technologies developed in NUS for water reuse and desalination applications: membrane distillation and forward osmosis

  • Teoh, May May;Wang, Kai Yu;Bonyadi, Sina;Yang, Qian;Chung, Tai-Shung
    • Membrane and Water Treatment
    • /
    • v.2 no.1
    • /
    • pp.1-24
    • /
    • 2011
  • The deficiency of clean water is a major global concern because all the living creatures rely on the drinkable water for survival. On top of this, abundant of clean water supply is also necessary for household, metropolitan inhabitants, industry, and agriculture. Among many purification processes, advances in low-energy membrane separation technology appear to be the most effective solution for water crisis because membranes have been widely recognized as one of the most direct and feasible approaches for clean water production. The aim of this article is to give an overview of (1) two new emerging membrane technologies for water reuse and desalination by forward osmosis (FO) and membrane distillation (MD), and (2) the molecular engineering and development of highly permeable hollow fiber membranes, with polyvinylidene fluoride (PVDF) and polybenzimidazole (PBI) as the main focuses for the aforementioned applications in National University of Singapore (NUS). This article presents the main results of membrane module design, separation performance, membrane characteristics, chemical modification and spinning conditions to produce novel hollow fiber membranes for FO and MD applications. As two potential solutions, MD and FO may be synergistically combined to form a hybrid system as a sustainable alternative technology for fresh water production.