• Title/Summary/Keyword: Distance-estimation

Search Result 1,193, Processing Time 0.029 seconds

A Secure Mobile Message Authentication Over VANET (VANET 상에서의 이동성을 고려한 안전한 메시지 인증기법)

  • Seo, Hwa-Jeong;Kim, Ho-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.5
    • /
    • pp.1087-1096
    • /
    • 2011
  • Vehicular Ad Hoc Network(VANET) using wireless network is offering the communications between vehicle and vehicle(V2V) or vehicle and infrastructure(V2I). VANET is being actively researched from industry field and university because of the rapid developments of the industry and vehicular automation. Information, collected from VANET, of velocity, acceleration, condition of road and environments provides various services related with safe drive to the drivers, so security over network is the inevitable factor. For the secure message authentication, a number of authentication proposals have been proposed. Among of them, a scheme, proposed by Jung, applying database search algorithm, Bloom filter, to RAISE scheme, is efficient authentication algorithm in a dense space. However, k-anonymity used for obtaining the accurate vehicular identification in the paper has a weak point. Whenever requesting the righteous identification, all hash value of messages are calculated. For this reason, as the number of car increases, a amount of hash operation increases exponentially. Moreover the paper does not provide a complete key exchange algorithm while the hand-over operation. In this paper, we use a Received Signal Strength Indicator(RSSI) based velocity and distance estimation algorithm to localize the identification and provide the secure and efficient algorithm in which the problem of hand-over algorithm is corrected.

The Effects of Negative Pressure and Drain Spacing in the Horizontal Method for an Early Settlement of Dredged and Filled Grounds (해안준설매립토의 조기안정을 위한 수평배수공법에서 부압과 배수재 배치간격의 영향)

  • 김수삼;한상재;김병일;김정기
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.15 no.1
    • /
    • pp.1-10
    • /
    • 2003
  • In this paper, the laboratory test results with middle-sired ,soil box test in modeling the in-situ installing of horizontal drains are discussed the estimation of the optimum negative pressure. The test was carried out in the different vacuum pressure conditions together with the measurement for the settlement and volume change of drained water by the installed drains during the consolidation process. After the test, the water content was measured to both directions of lateral distance from the drain and depth of the soil, to find out the distribution of ground improvement and strength enhancement. From the analysis on the distribution of water content, the gradual application of vacuum pressure to higher level by pre-determined stages starting from low vacuum pressure is found to be effective and desirable. In the comparison of the degrees of consolidation with elapsed time, the calculated value by the prediction method based on the Barren's conventional theory showed a good agreement with the measured value. With this, It is positively considered that the applicability of the prediction method based on Barren's theory to the practical design of horizontal drains can be justified such as in the calculation of drain spacing and consolidation period.

Estimation of Allowable Drop Height for Oriental Pears by Impact Tests (충격시험에 따른 배의 허용낙하높이 추정)

  • Kim, M. S.;Jung, H. M.;Seo, R.;Park, I. K.;Hwang, Y. S.
    • Journal of Biosystems Engineering
    • /
    • v.26 no.5
    • /
    • pp.461-468
    • /
    • 2001
  • Impact between fruits and other materials is a major cause of product damage in harvesting and handling systems. The oriental pears are more susceptible to bruising than other fruits such as European pears and apples, and are required more careful handling. The interest in the handling of the pears for the processing systems has raised the question of the allowable drop height to which pears can be dropped without causing objectionable damage. Drop tests on pears were conducted using an impact device developed by authors to estimate the allowable drop height without bruising. The impact device was constructed to hold in a selected orientation and to release a fruit by vacuum for dropping on to a force transducer. The drop height was adjustable for zero to 60 cm to achieve the desired distance between the bottom of the fruits and the top of the impact force transducer. The transducer was secured to 150 kg$\sub$f/ concrete block. The transducer signal was sampled every 0.17 ms with a strain gage measurement board in the micro computer where it was digitaly stored for later analysis. The selected sample fruit was Niitaka cultivar of pears which is one of the most promising fruit for export in Korea. The pears were harvested during the 1998 harvest season from an orchard in Daejeon. The sample fruit was selected from two groups which were stored for 3 months and 5 months respectively by the method of current commercial practice. The pears were allowed to stabilize at environmental condition(18$^{\circ}C$, 65% rh) of the experimental room. One hundred fifty six pears were tested from the heights of 5, 7.5. 10 and 12.5 cm while measurement were made of impact peak force, contact time, time to peak force, dwell time, pear diameter and mass. The bioyield strength and modulus of elasticity were measured using UTM immediately after each drop test. The allowable drop height was estimated on the base of bioyield strength of the pears in two ways. One was assumed the peak force during impact test increasing linearly with time, and the other was based on the actual drop test results. The computer program was developed for measuring the impact characteristics of the pears and analyzing the data obtained in the study. The peak force increased while contact times decreased with increasing drop height and contact times of the sample from the hard tissue group. The allowable drop height increased with increasing bioyield strength and contact times, and also varied with Poisson\`s ratio, mass and equilibrium radius of the pears. The allowable drop height calculated by a theoretical method was in the range from 1 to 4 cm, meanwhile, the estimated drop height considering the result of the impact test was in the range from 1 to 6 cm. Since the physical properties of fruits affected significantly the allowable drop height, the physical properties of the fruits should be considered when estimating the allowable drop height.

  • PDF

Motion Vector Coding Using Adaptive Motion Resolution (적응적인 움직임 벡터 해상도를 이용한 움직임 벡터 부호화 방법)

  • Jang, Myung-Hun;Seo, Chan-Won;Han, Jong-Ki
    • Journal of Broadcast Engineering
    • /
    • v.17 no.1
    • /
    • pp.165-178
    • /
    • 2012
  • In most conventional video codecs, such as MPEG-2 and MPEG-4, inter coding is performed with the fixed motion vector resolution. When KTA software was developed, resolution for MVs can be selected in each slice. Although KTA codec uses a variety of resolutions for ME, the selected resolution is applied over the entire pixels in the slice and the statistical property of the local area is not considered. In this paper, we propose an adaptive decision scheme for motion vector resolution which depends on region, where MV search area is divided to multiple regions according to the distance from PMV. In each region, the assigned resolution is used to estimate MV. Each region supports different resolution for ME from other regions. The efficiency of the proposed scheme is affected from threshold values to divide the search area and the entropy coding method to encode the estimated MV. Simulation results with HM3.0 which is the reference software of HEVC show that the proposed scheme provides bit rate gains of 0.9%, 0.6%, and 2.9% in Random Access, Low Delay with B picture, and Low Delay with P picture structures, respectively.

Modeling of Visual Attention Probability for Stereoscopic Videos and 3D Effect Estimation Based on Visual Attention (3차원 동영상의 시각 주의 확률 모델 도출 및 시각 주의 기반 입체감 추정)

  • Kim, Boeun;Song, Wonseok;Kim, Taejeong
    • Journal of KIISE
    • /
    • v.42 no.5
    • /
    • pp.609-620
    • /
    • 2015
  • Viewers of videos are likely to absorb more information from the part of the screen that attracts visual attention. This fact has led to the visual attention models that are being used in producing and evaluating videos. In this paper, we investigate the factors that are significant to visual attention and the mathematical form of the visual attention model. We then estimated the visual attention probability using the statistical design of experiments. The analysis of variance (ANOVA) verifies that the motion velocity, distance from the screen, and amount of defocus blur affect human visual attention significantly. Using the response surface modeling (RSM), we created a visual attention score model that concerns the three factors, from which we calculate the visual attention probabilities (VAPs) of image pixels. The VAPs are directly applied to existing gradient based 3D effect perception measurement. By giving weights according to our VAPs, our algorithm achieves more accurate measurement than the existing method. The performance of the proposed measurement is assessed by comparing them with subjective evaluation as well as with existing methods. The comparison verifies that the proposed measurement outperforms the existing ones.

A Vanishing Point Detection Method Based on the Empirical Weighting of the Lines of Artificial Structures (인공 구조물 내 직선을 찾기 위한 경험적 가중치를 이용한 소실점 검출 기법)

  • Kim, Hang-Tae;Song, Wonseok;Choi, Hyuk;Kim, Taejeong
    • Journal of KIISE
    • /
    • v.42 no.5
    • /
    • pp.642-651
    • /
    • 2015
  • A vanishing point is a point where parallel lines converge, and they become evident when a camera's lenses are used to project 3D space onto a 2D image plane. Vanishing point detection is the use of the information contained within an image to detect the vanishing point, and can be utilized to infer the relative distance between certain points in the image or for understanding the geometry of a 3D scene. Since parallel lines generally exist for the artificial structures within images, line-detection-based vanishing point-detection techniques aim to find the point where the parallel lines of artificial structures converge. To detect parallel lines in an image, we detect edge pixels through edge detection and then find the lines by using the Hough transform. However, the various textures and noise in an image can hamper the line-detection process so that not all of the lines converging toward the vanishing point are obvious. To overcome this difficulty, it is necessary to assign a different weight to each line according to the degree of possibility that the line passes through the vanishing point. While previous research studies assigned equal weight or adopted a simple weighting calculation, in this paper, we are proposing a new method of assigning weights to lines after noticing that the lines that pass through vanishing points typically belong to artificial structures. Experimental results show that our proposed method reduces the vanishing point-estimation error rate by 65% when compared to existing methods.

Development of Ubiquitous Sensor Network Intelligent Bridge System (유비쿼터스 센서 네트워크 기반 지능형 교량 시스템 개발)

  • Jo, Byung Wan;Park, Jung Hoon;Yoon, Kwang Won;Kim, Heoun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.1
    • /
    • pp.120-130
    • /
    • 2012
  • As long span and complex bridges are constructed often recently, safety estimation became a big issue. Various types of measuring instruments are installed in case of long span bridge. New wireless technologies for long span bridges such as sending information through a gateway at the field or sending it through cables by signal processing the sensing data are applied these days. However, The case of occurred accidents related to bridge in the world have been reported that serious accidents occur due to lack of real-time proactive, intelligent action based on recognition accidents. To solve this problem in this study, the idea of "communication among things", which is the basic method of RFID/USN technology, is applied to the bridge monitoring system. A sensor node module for USN based intelligent bridge system in which sensor are utilized on the bridge and communicates interactively to prevent accidents when it captures the alert signals and urgent events, sends RF wireless signal to the nearest traffic signal to block the traffic and prevent massive accidents, is designed and tested by performing TinyOS based middleware design and sensor test free Space trans-receiving distance.

Estimation of Magnitude of Debris Flow and Correlation Analysis Between Influencing Factors (토석류 규모 산정과 영향인자와의 상관성 분석)

  • Choi, Young-Nam;Hwan, Hui-Seok;Lee, Hyung-Ho;Yoo, Nam-Jae
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.2
    • /
    • pp.79-87
    • /
    • 2017
  • In this paper, for 43 sites neighboring to western area of Gangwondo where disaster of debris flow occurred from 2006 to 2013, magnitude of debris flow was estimated from results of site investigation and correlation analysis between influencing factors to its magnitude was performed. Magnitude of channelized debris flow was found greater by 6.5 times of that of hill slope debris flow and approximately 5% of total volume was occurred at initiation part of channelized debris flow. As results of analyzing yield rate of debris flow, for channelized debris flow, yield rate values of $19m^3/m$ and $8m^3/m$ were obtained for total volume being over $10,000m^3/m$ as the large scale of debris flow and less than $10,000m^3/m$ respectively, and value of $5m^3/m$ was estimated for hill slope debris flow. As results of correlation analysis of influencing factors to magnitude of debris flow, runoff distance and erosion width were very highly correlated to its magnitude whereas average slope of basin and erosion depth showed relatively low correlation. In particular, value of erosion depth was in the range of 0.5-2.6 m, being similar range to the value proposed by Ikeya (1981). Triggering rainfall to debris flow such as continuous rainfall and maximum intensity of hour rainfall were analyzed to have low correlation with magnitude of debris flow.

Simulation for the Estimation of Design Parameters in an Aquifer Thermal Energy Storage (ATES) Utilization System Model (대수층 축열 에너지(ATES) 활용 시스템 모델의 설계인자 추정을 위한 시뮬레이션)

  • Shim Byoung-Ohan
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.4
    • /
    • pp.54-61
    • /
    • 2005
  • An aquifer thermal energy storage (ATES) system can be very cost-effective and renewable energy sources, depending on site-specific parameters and load characteristics. In order to develop the ATES system which has certain hydrogeological characteristics, understanding the thermohydraulic process of an aquifer is necessary for a proper design of an aquifer heat storage system under given conditions. The thermohydraulic transfer for heat storage was simulated according to two sets of simple pumping and waste water reinjection scenarios of groundwater heat pump system operation in a two-layered aquifer model. In the first set of the scenarios, the movement of the thermal front and groundwater level was simulated by changing the locations of injection and pumping wells in a seasonal cycle. However, in the second set the simulation was performed in the state of fixing the locations of pumping and injection wells. After 365 days simulation period, the shape of temperature distribution was highly dependent on the injected water temperature and the distance from the injection well. A small temperature change appeared on the surface compared to other simulated temperature distributions of 30 and 50 m depths. The porosity and groundwater flow characteristics of each layer sensitively affected the heat transfer. The groundwater levels and temperature changes in injection and pumping wells were monitored and the thermal interference between the wells was analyzed to test the effectiveness of the heat pump operation method applied.

Transmission Dose Estimation Algorithm for Irregularly Shaped Radiation Field (부정형 방사선 조사면에 대한 투과선량 보정 알고리즘)

  • Yun Hyong Geun;Chie Eui Kyu;Huh Soon Nyung;Wu Hong Gyun;Lee Hyoung Koo;Shin Kyo Chul;Kim Siyong;Ha Sung Whan
    • Radiation Oncology Journal
    • /
    • v.20 no.3
    • /
    • pp.274-282
    • /
    • 2002
  • Purpose : Measurement of transmission dose is useful for in vivo dosimetry. In this study, the algorithm for estimating the transmission dose for open radiation fields was modified for application to partially blocked radiation fields. Materials and Methods : The beam data was measured with a flat solid phantom with various blocked fields. A new correction algorithm for partially blocked radiation field was developed from the measured data. This algorithm was tested in some settings simulating clinical treatment with an irregular field shape. Results : The correction algorithm for the beam block could accurately reflect the effect of the beam block, with an error within ${\pm}1.0\%$, with both square fields and irregularly shaped fields. Conclusion : This algorithm can accurately estimate the transmission dose in most radiation treatment settings, including irregularly shaped field.