• Title/Summary/Keyword: Distance measurement algorithm

Search Result 311, Processing Time 0.024 seconds

The ConvexHull using Outline Extration Algorithm in Gray Scale Image (이진 영상에서 ConvexHull을 이용한 윤곽선 추출 알고리즘)

  • Cho, Young-bok;Kim, U-ju;Woo, Sung-hee
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.162-165
    • /
    • 2017
  • The proposed paper extracts the region of interest from the x-lay input image and compares it with the reference image. The x-ray image has the same shape, but the size, direction and position of the object are photographed differently. In this way, we measure the erection difference of darkness and darkness using the similarity measurement method for the same object. Distance measurement also calculates the distance between two points with vector coordinates (x, y, z) of x-lay data. Experimental results show that the proposed method improves the accuracy of ROI extraction and the reference image matching time is more efficient than the conventional method.

  • PDF

Radius-Measuring Algorithm for Small Tubes Based on Machine Vision using Fuzzy Searching Method (퍼지탐색을 이용한 머신비전 기반의 소형 튜브 내경측정 알고리즘)

  • Naranbaatar, Erdenesuren;Lee, Sang-Jin;Kim, Hyoung-Seok;Bae, Yong-Hwan;Lee, Byung-Ryong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.11
    • /
    • pp.1429-1436
    • /
    • 2011
  • In this paper, a new tube-radius-measuring algorithm has been proposed for effectively measuring the radii of small tubes under severe noise conditions that can also perform well when metal scraps that make it difficult to measure the radius correctly are inside the tube hole. In the algorithm, we adopt a fuzzy searching method that searches for the center of the inner circle by using fuzzy parameters for distance and orientation from the initial search point. The proposed algorithm has been implemented and tested on both synthetic and real-world tube images, and the performance is compared to existing circle-detection algorithms, such as the Hough transform and RANSAC methods, to prove the accuracy and effectiveness of the algorithm. From this comparison, it is concluded that the proposed algorithm has excellent performance in terms of measurement accuracy and computation time.

Development of Displacement Measurement System of Structures Using Image Processing Techniques (영상처리기술을 이용한 구조물의 변위 측정 시스템의 개발)

  • 김성욱;김상봉;서진호
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.8
    • /
    • pp.673-679
    • /
    • 2004
  • In this paper, we develop the displacement measurement system of multiple moving objects based on image processing techniques. The image processing method adopts inertia moment theory for obtaining the centroid measurement of the targets and basic processing algorithm of gray, binary, closing, labeling and so on. To get precise displacement measurement in spite of multiple moving targets, a CGD camera with zoom is used and the position of camera is changed by a pan/tilt system. The fiducial marks on the fixed positions are used as the sensing points for the image processing to recognize the position errors in direction of XY-coordinates. The precise alignment device is pan/tilt of XY-type and the pan/tilt is controlled by DC servomotors which are driven by a microprocessor. Morover, the centers of fiducial marks are obtainted by an inertia moment method. By applying the developed precise position control system for multiple targets, the displacement of multiple moving targets are detected automatically and are also stored in the database system in a real time. By using database system and internet, the displacement datum can be confirmed at a great distance and analyzed. Finally, the effectiveness of developed system is shown in experimental results and realized the precision about 0.12[mm] in the position control of XY-coordinates.

The Indoor Localization Algorithm using the Difference Means based on Fingerprint in Moving Wi-Fi Environment (이동 Wi-Fi 환경에서 핑거프린트 기반의 Difference Means를 이용한 실내 위치추정 알고리즘)

  • Kim, Tae-Wan;Lee, Dong Myung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.11
    • /
    • pp.1463-1471
    • /
    • 2016
  • The indoor localization algorithm using the Difference Means based on Fingerprint (DMFPA) to improve the performance of indoor localization in moving Wi-Fi environment is proposed in this paper. In addition to this, the performance of the proposed algorithm is also compared with the Original Fingerprint Algorithm (OFPA) and the Gaussian Distribution Fingerprint Algorithm (GDFPA) by our developed indoor localization simulator. The performance metrics are defined as the accuracy of the average localization accuracy; the average/maximum cumulative distance of the occurred errors and the average measurement time in each reference point.

A Robust Fault Location Algorithm for Single Line-to-ground Fault in Double-circuit Transmission Systems

  • Zhang, Wen-Hao;Rosadi, Umar;Choi, Myeon-Song;Lee, Seung-Jae;Lim, Il-Hyung
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • This paper proposes an enhanced noise robust algorithm for fault location on double-circuit transmission line for the case of single line-to-ground (SLG) fault, which uses distributed parameter line model that also considers the mutual coupling effect. The proposed algorithm requires the voltages and currents from single-terminal data only and does not require adjacent circuit current data. The fault distance can be simply determined by solving a second-order polynomial equation, which is achieved directly through the analysis of the circuit. The algorithm, which employs the faulted phase network and zero-sequence network with source impedance involved, effectively eliminates the effect of load flow and fault resistance on the accuracy of fault location. The proposed algorithm is tested using MATLAB/Simulink under different fault locations and shows high accuracy. The uncertainty of source impedance and the measurement errors are also included in the simulation and shows that the algorithm has high robustness.

Error Correction Technique of Distance Measurement for ToF LIDAR Sensor

  • Moon, Yeon-Kug;Shim, Young Bo;Song, Hyoung-Kyu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.2
    • /
    • pp.960-973
    • /
    • 2018
  • This paper presents design for error correcting algorithm of the time of flight (ToF) detection value in the light detection and ranging (LIDAR) system sensor. The walk error of ToF value is generated by change of the received signal power depending on distance between the LIDAR sensor and object. The proposed method efficiently compensates the ToF value error by the independent ToF value calculation from the received signal using both rising point and falling point. A constant error of ~0.05 m is obtained after the walk error correction while an increasing error up to ~1 m is obtained with conventional method.

A study on electronic moving aid system (전자식 보행지원 시스템에 관한 연구)

  • Seo, J.B.;Ham, K.K.;Han, S.C.;Huh, W.
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.565-568
    • /
    • 1998
  • In this paper, we implemented the electornic moving aid system for safe walking of the blind. An obstacle detecting of each sector used ultrasound and a distance measurement used time of flight. The alarm is designed to have a sound and a tactile function that can be selected on an user's convenience. This system can detect and obstacle of upward, forward, downward and optimally warn to the blind with vibration, beep sound by appling warning algorithm on object detection. Experimental testing and performance evaluation have been successfully carried out with a prototype cane, and the experiment shows the capability of the function to detect unknown objects within an assigned distance, under knees, over head height, and crushed puddles.

  • PDF

A Study about the Construction of Intelligence Data Base for Micro Defect Evaluation (미소 결함 평가를 위한 지능형 데이터베이스 구축에 관한 연구)

  • 김재열
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.585-590
    • /
    • 2000
  • Recently, It is gradually raised necessity that thickness of thin film is measured accuracy and managed in industrial circles and medical world. Ultrasonic Signal processing method is likely to become a very powerful method for NDE method of detection of microdefects and thickness measurement of thin film below the limit of Ultrasonic distance resolution in the opaque materials, provides useful information that cannot be obtained by a conventional measuring system. In the present research, considering a thin film below the limit of ultrasonic distance resolution sandwiched between three substances as acoustical analysis model, demonstrated the usefulness of ultrasonic Signal processing technique using information of ultrasonic frequency for NDE of measurements of thin film thickness, sound velocity, and step height, regardless of interference phenomenon. Numeral information was deduced and quantified effective information from the image. Also, pattern recognition of a defected input image was performed by neural network algorithm. Input pattern of various numeral was composed combinationally, and then, it was studied by neural network. Furthermore, possibility of pattern recognition was confirmed on artifical defected input data formed by simulation. Finally, application on unknown input pattern was also examined.

  • PDF

Distance Measurement Based on Structured Light Image for Mobile Robots (이동로봇을 위한 구조광 영상기반 거리측정)

  • Yi, Soo-Yeong;Hong, Young-Jin;Suh, Jin-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.1
    • /
    • pp.18-24
    • /
    • 2010
  • In this paper, we address an active ranging system based on laser structured light image for mobile robot application. Since the burdensome correspondence problem is avoidable, the structured light image processing has efficient computation in comparison with the conventional stereo image processing. By using a cylindrical lens in the laser generation, it is possible to convert a point laser into a stripe laser without motorized scan in the proposed system. In order to achieve robustness against environmental illumination noise, we propose an efficient integro-differential image processing algorithm. The proposed system has embedded image processing module and transmits distance data to reduce the computational burden in main control system.

The exercise-distance measuring system with high precision considering of altitude (고도를 고려한 정밀도 높은 운동거리 측정시스템)

  • Kim, Dae-Ho;Jung, In-Bum
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.3
    • /
    • pp.615-625
    • /
    • 2012
  • To measure the athletic information of exercisers, the applications of smartphone are programmed based on the sensing data from GPS device. These applications provide exercisers for running or walking distance, exercising time, calorie consumption, average speed, and so on. Among them, the exercising distance should measure accurately because it directly affects the other athletic information for exercisers. However, the existing methods for measuring the exercising distance makes errors because they are worked on the simple sphere or ellipse earth models. Actually, the surface of real earth is composed of inclined ground like hills and valleys. In this paper, a new exercising distance measuring algorithm is proposed to compensate the errors of existing method. It considers the altitude of slopes in exercising routes. To evaluate exercising distance measuring algorithms, we implement the athletic life-guide system based on the smartphone platform. In experiments, the proposed method shows that it provides more accurate distance measurement.