• Title/Summary/Keyword: Distance measurement

Search Result 2,351, Processing Time 0.029 seconds

Distance Measurement using Modified Triangular Interferometer (변형 삼각간섭 계를 이용한 거리계측)

  • 김수길;황보승
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.119-122
    • /
    • 2001
  • We derived the resolution of the modified triangular interferometer and described the analysis about distance measurement using the one. Also, to demonstrate the feasibility of distance measurement using the modified triangular interferometer, the incoherent hologram of a two-point source with depth and its numerical reconstruction were presented.

  • PDF

Distance Measurement Using a Single Camera with a Rotating Mirror

  • Kim Hyongsuk;Lin Chun-Shin;Song Jaehong;Chae Heesung
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.4
    • /
    • pp.542-551
    • /
    • 2005
  • A new distance measurement method with the use of a single camera and a rotating mirror is presented. A camera in front of a rotating mirror acquires a sequence of reflected images, from which distance information is extracted. The distance measurement is based on the idea that the corresponding pixel of an object point at a longer distance moves at a higher speed in a sequence of images in this type of system setting. Distance measurement based on such pixel movement is investigated. Like many other image-based techniques, this presented technique requires matching corresponding points in two images. To alleviate such difficulty, two kinds of techniques of image tracking through the sequence of images and the utilization of multiple sets of image frames are described. Precision improvement is possible and is one attractive merit. The presented approach with a rotating mirror is especially suitable for such multiple measurements. The imprecision caused by the physical limit could be improved through making several measurements and taking an average. In this paper, mathematics necessary for implementing the technique is derived and presented. Also, the error sensitivities of related parameters are analyzed. Experimental results using the real camera-mirror setup are reported.

Design and Implementation of Magnetic Induction based Wireless Underground Communication System Supporting Distance Measurement

  • Kim, Min-Joon;Chae, Sung-Hun;Shim, Young-Bo;Lee, Dong-Hyun;Kim, Myung-Jin;Moon, Yeon-Kug;Kwon, Kon-Woo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.8
    • /
    • pp.4227-4240
    • /
    • 2019
  • In this paper, we present our proposed magnetic induction based wireless communication system. The proposed system is designed to perform communication as well as distance measurement in underground environments. In order to improve the communication quality, we propose and implement the adaptive channel compensation technique. Based on the fact that the channel may be fast time-varying, we keep track of the channel status each time the data is received and accordingly compensate the channel coefficient for any change in the channel status. By using the proposed compensation technique, the developed platform can reliably communicate over distances of 10m while the packet error rate is being maintained under 5%. We also implement the distance measurement block that is useful for various applications that should promptly estimate the location of nearby nodes in communication. The distance between two nodes in communication is estimated by generating a table describing pairs of the magnetic signal strength and the corresponding distance. The experiment result shows that the platform can estimate the distance of a node located within 10m range with the measurement error less than 50cm.

Low Cost Omnidirectional 2D Distance Sensor for Indoor Floor Mapping Applications

  • Kim, Joon Ha;Lee, Jun Ho
    • Current Optics and Photonics
    • /
    • v.5 no.3
    • /
    • pp.298-305
    • /
    • 2021
  • Modern distance sensing methods employ various measurement principles, including triangulation, time-of-flight, confocal, interferometric and frequency comb. Among them, the triangulation method, with a laser light source and an image sensor, is widely used in low-cost applications. We developed an omnidirectional two-dimensional (2D) distance sensor based on the triangulation principle for indoor floor mapping applications. The sensor has a range of 150-1500 mm with a relative resolution better than 4% over the range and 1% at 1 meter distance. It rotationally scans a compact one-dimensional (1D) distance sensor, composed of a near infrared (NIR) laser diode, a folding mirror, an imaging lens, and an image detector. We designed the sensor layout and configuration to satisfy the required measurement range and resolution, selecting easily available components in a special effort to reduce cost. We built a prototype and tested it with seven representative indoor wall specimens (white wallpaper, gray wallpaper, black wallpaper, furniture wood, black leather, brown leather, and white plastic) in a typical indoor illuminated condition, 200 lux, on a floor under ceiling mounted fluorescent lamps. We confirmed the proposed sensor provided reliable distance reading of all the specimens over the required measurement range (150-1500 mm) with a measurement resolution of 4% overall and 1% at 1 meter, regardless of illumination conditions.

A Study on Measurement Accuracy of Theodolite System(II) -A Measurement Accuracy for a Height of Scale Bar (데오드라이트 시스템의 측정 정확도에 대한 연구(II) -기준자 측정 높이에 따른 측정 정확도)

  • 윤용식;이동주;정종길
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.4
    • /
    • pp.37-43
    • /
    • 2004
  • A measurement accuracy of theodolite system may be affected by a measurement environment, a measurement distance change and so on. This study was performed for measuring an accuracy when the height of scale bar is changed 0.05m, 0.5m, 1m and 1.5m under the distance 3m between two theodolites, the distance 4m from the theodolite system to scale bar and the distance 5m from the thodolite system to the horizontal target bar. And we could know that the best height is 0.05m and 1m.

Theoretical Considerations on Combined Optical Distance Measurements Using a Femtosecond Pulse Laser

  • Joo, Ki-Nam;Kim, Seung-Woo
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.4
    • /
    • pp.396-400
    • /
    • 2012
  • We introduce a combined technique and the mathematical description for distance measurements using a femtosecond pulse laser in a long range and a fine resolution. For distance measurements, the maximum measurable range can be extended by combining measurement results from several different methods while requiring relationships between the different measurement uncertainties and unambiguity ranges. This paper briefly explains why the uncertainty of a rough measurement technique (RMT) should be, at least, smaller than the half unambiguity range of a fine measurement technique (FMT) in order to combine a FMT with a RMT. Further discussions about the total measurement range, resolution, and uncertainty for various optical measurement techniques are also discussed.

A Study on the Precise Distance Measurement for Radar Level Transmitter of FMCW Type using Correlation Anaysis Method (상관분석법을 이용한 FMCW 타입 레이더 레벨 트랜스미터의 정밀 거리 측정에 관한 연구)

  • Ji, Suk-Joon;Lee, John-Tark
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.7
    • /
    • pp.1024-1031
    • /
    • 2012
  • In this paper, FMCW type radar level transmitter using correlation analysis method is implemented for precise distance measurement of cargo tank. FMCW type radar level transmitter is the device for distance measurement which calculates the distance by analyzing the beat frequency, that is, the frequency difference between Tx and RX signal from radar antenna using Fast Fourier Transform(FFT), but compensated algorithm like Zoom FFT is needed for the improvement of the frequency precision because the frequency precision of FFT is limited depending on sampling frequency and the number of sampling data. In case of Zoom FFT, the number of sampling data and noisy signal are the main factor influencing the measurement accuracy of Zoom FFT like FFT. Therefore, in order to overcome the limited environment and achieve the precise measurement, correlation coefficient is used for the distance measurement and the errors of measurement are verified to be in the range of ${\pm}1mm$.

Development of 2-Dimension Radar Distance Measurement System with 24 GHz Antenna Module and Its Performance Evaluation (24 GHz 안테나 모듈을 이용한 2차원 레이더 거리 측정 시스템 개발 및 성능 평가)

  • Go, Seok-Jo;Kim, Tae-Hoon;Cha, Byung-Soo;Park, Min-Kyu;Moon, Young-Gun;Yu, Ki-Ho
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.19 no.2
    • /
    • pp.62-68
    • /
    • 2016
  • Laser distance measuring systems are used in many fields with high precision. However, when measuring the reflector such as the mirror and the black color, a laser distance measuring system does not guarantee the measurement accuracy. In order to measure the shape of the cargo, this study proposes the radar distance measurement system. The radar distance measuring system is composed of a distance measuring unit with a 24 GHz antenna module, a signal processing and control board and the 1-axis tilting unit. And, this study developed a monitoring program to monitor the measured data. In order to evaluate performance of the developed system, the distance measurement tests are carried out. The distance error was about 6-15 cm. However, considering the size of the cargo, the precision is not a problem. And, cargo shape was measured by using the distance information measured by the 1-axis tilting unit. It could get a 2 dimension shape profile for the cargo stacked in a yard.

Precision Evaluation of Three-dimensional Feature Points Measurement by Binocular Vision

  • Xu, Guan;Li, Xiaotao;Su, Jian;Pan, Hongda;Tian, Guangdong
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.1
    • /
    • pp.30-37
    • /
    • 2011
  • Binocular-pair images obtained from two cameras can be used to calculate the three-dimensional (3D) world coordinate of a feature point. However, to apply this method, measurement accuracy of binocular vision depends on some structure factors. This paper presents an experimental study of measurement distance, baseline distance, and baseline direction. Their effects on camera reconstruction accuracy are investigated. The testing set for the binocular model consists of a series of feature points in stereo-pair images and corresponding 3D world coordinates. This paper discusses a method to increase the baseline distance of two cameras for enhancing the accuracy of a binocular vision system. Moreover, there is an inflexion point of the value and distribution of measurement errors when the baseline distance is increased. The accuracy benefit from increasing the baseline distance is not obvious, since the baseline distance exceeds 1000 mm in this experiment. Furthermore, it is observed that the direction errors deduced from the set-up are lower when the main measurement direction is similar to the baseline direction.

The Precision Laser Range Finder Using Laser Diode for Industrial Applications (반도체 레이저를 이용한 산업용 정밀 거리 측정 시스템)

  • Woo, Sung-Hun;Park, Jung-Hwan;Kim, Young-Min;Park, Dong-Hong;Park, Won-Zoo
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2007.05a
    • /
    • pp.231-234
    • /
    • 2007
  • A measurement technique in an industry site is basis technique which is bringing a ripple effect on an increasing productivity. Recently, a measurement request is increasing in the industry field as well as the variety field such as leisure, research. Thus, it is in point of time to secure an internal technique about measurement using a laser. In this paper, we prepare to develop the industrial precision laser distance measure device that is available measuring in several hundred meters[m]. In other words, we are planning to measure a wide distance using a laser diode that has long life and is compact, inexpensive. Through this research, we'll secure the pulse laser control technique, a signal processing, technique for distance calculation about a laser distance measurement system. And hereafter, we'll plan to commercialize a laser distance device using this research.

  • PDF