• Title/Summary/Keyword: Distance between buildings

Search Result 134, Processing Time 0.03 seconds

Seismic pounding between adjacent buildings considering soil-structure interaction

  • Raheem, Shehata E Abdel;Alazrak, Tarek M.A.;AbdelShafy, Aly G.A.;Ahmed, Mohamed M.;Gamal, Yasser A.S.
    • Earthquakes and Structures
    • /
    • v.20 no.1
    • /
    • pp.55-70
    • /
    • 2021
  • In urban cities, buildings were built in the neighborhood, these buildings influence each other through structure-soilstructure interaction (SSSI) and seismic pounding due to limited separation distance in-between. Generally, the effects of the interaction between soil and structure are disregarded during seismic design and analysis of superstructure. However, the system of soil-base adversely changes structural behavior and response demands. Thus, the vibration characteristics plus the seismic response of a building are not able to be independent of those in adjacent buildings. The interaction between structure, soil, and structure investigates the action of the attendance of adjacent buildings to the others by the interaction effect of the sub-soil under dynamic disturbances. The main purpose of this research is to analyze the effects of SSSI and seismic pounding on the behavior of adjacent buildings. The response of a single structure or two adjacent structures with shallow raft base lying on soft soil are studied. Three dimensions finite element models are developed to investigate the effects of pounding; gap distance; conditions of soil; stories number; a mass of adjacent building and ground excitation frequency on the seismic responses and vibration characteristics of the structures. The variation in the story displacement, story shear, and story moment responses demands are studied to evaluate the presence effect of the adjacent buildings. Numerical results acquired using conditions of soil models are compared with the condition of fixed support and adjacent building models to a single building model. The peak responses of story displacement, story moment, and story shear are studied.

Across-wind excitation mechanism for interference of twin tall buildings in tandem arrangement

  • Zu, G.B.;Lam, K.M.
    • Wind and Structures
    • /
    • v.26 no.6
    • /
    • pp.397-413
    • /
    • 2018
  • Excitation mechanism of interference effect between two tall buildings is investigated with wind tunnel experiments. Synchronized building surface pressure and flow field measurements by particle image velocimetry (PIV) are conducted to explore the relationship between the disturbed wind flow field and the consequent wind load modification for twin buildings in tandem. This reveals evident excitation mechanisms for the fluctuating across-wind loads on the buildings. For small distance (X/D < 3) between two buildings, the disturbed flow pattern of impaired vortex shedding is observed and the fluctuating across-wind load on the downstream building decreases. For larger distance ($X/D{\geq}3$), strong correlation between the across-wind load of the downstream building and the oscillation of the wake of the upstream building is found. By further analysis with conditional sampling and phase-averaged techniques, the coherent flow structures in the building gap are clearly observed and the wake oscillation of the upstream building is confirmed to be the reason of the magnified across-wind force on the downstream building. For efficient PIV measurement, the experiments use a square-section high-rise building model with geometry scale smaller than the usual value. Interference factors for all three components of wind loads on the building models being surrounded by another identical building with various configurations are measured and compared with those from previous studies made at large geometry scale. The results support that for interference effect between buildings with sharp corners, the length scale effect plays a minor role provided that the minimum Reynolds number requirement is met.

Structural seismic response versus epicentral distance and natural period: the case study of Boumerdes (Algeria) 2003 earthquake

  • Dorbani, S.;Badaoui, M.;Benouar, D.
    • Structural Engineering and Mechanics
    • /
    • v.48 no.3
    • /
    • pp.333-350
    • /
    • 2013
  • This paper deals with the development of expressions relating structural seismic response parameters to the epicentral distances of an earthquake and the natural period of several reinforced concrete buildings (6, 9 and 12 storey), with three floor plans: symmetric, monosymmetric, and unsymmetric. These structures are subjected to seismic spectrum of accelerations collected during the Boumerdes earthquake (Algeria, May $21^{st}$, 2003, Mw=6.8) at different epicentral distances. The objective of this study is to develop relations between structural responses namely: base shear, storey displacements, interstory drifts and epicentral distance and fundamental period for a given earthquake. The seismic response of the buildings is carried out in both longitudinal transverse and directions by the response spectrum method (modal spectral approach).

Influence characteristics of isolation piles on deformation of existing shallow foundation buildings under deep excavation

  • Liu, Xinrong;Liu, Peng;Zhou, Xiaohan;Wang, Linfeng;Zhong, Zuliang;Lou, Xihui;Chen, Tao;Zhang, Jilu
    • Geomechanics and Engineering
    • /
    • v.31 no.1
    • /
    • pp.1-14
    • /
    • 2022
  • Urban deep excavation will affect greatly on the deformation of adjacent existing buildings, especially those with shallow foundations. Isolation piles has been widely used in engineering to control the deformation of buildings adjacent to the excavation, but its applicability is still controversial. Based on a typical engineering, numerical calculation models were established and verified through monitoring data to study the influence characteristics of isolation piles on the deformation of existing shallow foundation buildings. Results reveal that adjacent buildings will increase building settlement δv and the deformation of diaphragm walls δh, while the isolation piles can effectively decrease these. The surface settlement curve is changed from "groove" type to "double groove" type. Sufficiently long isolation pile can effectively decrease δv, while short isolation piles will lead to a negative effect. When the building is within the range of the maximum settlement location P, maximum building rotation θm will increase with the pile length L and the relative position between isolation pile and building d/D increase (d is the distance between piles and diaphragm walls, D is the distance between buildings and diaphragm walls), instead, θm will decrease for buildings outside the location P, and the optimum was obtained when d/D=0.7.

Characteristic of Wind Flow around Building Structures for Wind Resource Assessment (풍자원 평가를 위한 건축물 주변의 유동특성)

  • Cho, Kang-Pyo;Jeong, Seung-Hwan;Shin, Seung-Hwa
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.3
    • /
    • pp.50-58
    • /
    • 2011
  • To utilize wind resources effectively around buildings in urban area, the magnitudes of wind velocity and turbulence intensity are important, which means the need of the information about the relationship between the magnitude of wind velocity and that of fluctuating wind velocity. In the paper, wind-tunnel experiments were performed to provide the information about Characteristic of Wind flow around buildings with the spanwise distance and the side ratio of buildings as variables. For a single building with the side ratios of one and two, the average velocity ratio was 1.4 and the velocity standard deviation ratio ranged from 1.4 to 2.6 at the height of 0.02m at the corner of the windward side, in which flow separation occurred. For twin buildings with the side ratios of one and two, the velocity ratio ranged from 2 to 2.5 as the spanwise distance varied at the height of 0.02m, and the velocity standard deviation ratio varied near 1.25. For twin buildings with the side ratios of one and two, the maximum velocity ratio was 1.75 at the height of 0.6m, and the maximum velocity standard deviation ratio was 2.1. It was also found from the results of CFD analysis and wind-tunnel experiments that for twin buildings with the side ratios of one and two, the difference between the velocity ratio of CFD analysis and that of wind-tunnel experiments at streamwise distances was near 0.75.

A probabilistic seismic demand model for required separation distance of adjacent structures

  • Rahimi, Sepideh;Soltani, Masoud
    • Earthquakes and Structures
    • /
    • v.22 no.2
    • /
    • pp.147-155
    • /
    • 2022
  • Regarding the importance of seismic pounding, the available standards and guidelines specify minimum separation distance between adjacent buildings. However, the rules in this field are generally based on some simple assumptions, and the level of confidence is uncertain. This is attributed to the fact that the relative response of adjacent structures is strongly dependent on the frequency content of the applied records and the Eigen frequencies of the adjacent structures as well. Therefore, this research aims at investigating the separation distance of the buildings through a probabilistic-based algorithm. In order to empower the algorithm, the record-to-record uncertainties, are considered by probabilistic approaches; besides, a wide extent of material nonlinear behaviors can be introduced into the structural model by the implementation of the hysteresis Bouc-Wen model. The algorithm is then simplified by the application of the linearization concept and using the response acceleration spectrum. By implementing the proposed algorithm, the separation distance in a specific probability level can be evaluated without the essential need of performing time-consuming dynamic analyses. Accuracy of the proposed method is evaluated using nonlinear dynamic analyses of adjacent structures.

A Study on the Evacuation Performance According to Variation in Remoteness between Exit Stairways in Tall Buildings

  • Han, Gisung;Kim, Tae-Young;Lee, Kyung-Hoon
    • Architectural research
    • /
    • v.22 no.2
    • /
    • pp.53-61
    • /
    • 2020
  • The purpose of this study is to examine the influence of remoteness between exit stairways on evacuation performance. Firstly, we reviewed the design regulations of the U.S., the U.K., and South Korea, in relation to remoteness between Exit stairways. Secondly, evacuation simulation was implemented, in order to evaluate the adequacy of each standard. Eight tall buildings in South Korea were selected for the simulation. Evacuation performance was assessed for different remote distances between Exit stairways. Lastly, this research analyses the evacuation simulation data statistically in relation to the effect of remoteness on evacuation time. We found that as the distance between two exit stairways increases, the total evacuation time and average evacuation time for evacuees decreases. There was no statistical influence between the maximum travel distance of the evacuee and the remoteness between two exit stairways, but there was a significant effect on the average travel distance of the evacuees. In addition, the results from the optimal point showed that the L_ratio had the highest evacuation time at 0.44, while the D_ratio had the highest evacuation time at 0.38.

Mitigation of seismic pounding between RC twin high-rise buildings with piled raft foundation considering SSI

  • Farghaly, Ahmed Abdelraheem;Kontoni, Denise-Penelope N.
    • Earthquakes and Structures
    • /
    • v.22 no.6
    • /
    • pp.625-635
    • /
    • 2022
  • High-rise buildings (HRBs) are considered one of the most common structures nowadays due to the population growth, especially in crowded towns. The lack of land in crowded cities has led to the convergence of the HRBs and the absence of any gaps between them, especially in lands with weak soil (e.g., liquefaction-prone soil), but then during earthquakes, these structures may be exposed to the risk of collision between them due to the large increase in the horizontal displacements, which may be destructive in some cases to the one or both of these adjacent buildings. To evaluate methods of reducing the risk of collision between adjacent twin HRBs, this research investigates three vibration control methods to reduce the risk of collision due to five different earthquakes for the case of two adjacent reinforced concrete (RC) twin high-rise buildings of 15 floors height without gap distance between them, founded on raft foundation supported on piles inside a liquefaction-prone soil. Contact pounding elements between the two buildings (distributed at all floor levels and at the raft foundation level) are used to make the impact strength between the two buildings realistic. The mitigation methods investigated are the base isolation, the tuned mass damper (TMD) method (using traditional TMDs), and the pounding tuned mass damper (PTMD) method (using PTMDs connected between the two buildings). The results show that the PTMD method between the two adjacent RC twin high-rise buildings is more efficient than the other two methods in mitigating the earthquake-induced pounding risk.

Influence of roadside buildings on the noise in the backside blocks in city area (도시내 가로변 빌딩이 도로 이면지역의 소음에 미치는 영향)

  • Kim, Yong-Seong;Haan, Chan-Hoon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.3
    • /
    • pp.352-362
    • /
    • 2019
  • The old residences and shops in the backside blocks are affected by the traffic noises from the main road. The noise of the backside roads is affected by the following factors such as the height of the roadside buildings, the distance between the road and the backside streets, distance among adjacent roadside buildings, and the difference of the adjacent building heights. The both noise levels on the road and the backside street were measured simultaneously in 15 urban blocks of a city which can be categorized into two types of roadside building plans ; 1) one single building along the street, 2) buildings arranged on one axis beside the road. As the results, there is no significant noise reduction due to the width of the buildings in general. However, in the cases of buildings arranged on one axis beside the road, it was found that the average noise reduction was 12 dB(A) on the basis of the building height of 4 m. Also, it was analysed that for each 4 m increase in the building height, noise reduction occurred by 2 dB(A) beyond building height of 4 m. In general, it was proved that the noise of the back streets is mainly affected by the lowest height of the roadside buildings. It was found that noise is increased by 1 dB(A) for each 4 m increase of the height difference between adjacent buildings. Also, It was revealed that for each 0.5 m increase in the distance between roadside building, noise reduction decreased by 1 dB(A).

A Study on the Distance Ratio between Apartment Houses for Sunshine Time of Apartment Houses (focused in Seoul metropolitan city and six metropolitan cities) (공동주택(共同住宅)에서 일조시간(日照時間)에 따른 인동거이비(隣棟距離比)에 관한 연구(硏究) (서울특별시 및 6대 광역시 중심으로))

  • Lee, Hyang-Rim;Son, Cheol-Soo
    • Journal of the Korean housing association
    • /
    • v.17 no.5
    • /
    • pp.39-46
    • /
    • 2006
  • This study was conducted in seven metropolitan cities in south korea containing Seoul and Busan etc and used DevC++ language program in the process to get datas of the distance ratio between apartment houses by the length of time accepting sunshine during the day time. Basically by inputting information such as a certain date, longitude, latitude etc, it was possible to get outputs of the length of shadow. This study obtained the data from the model experiment and computer programs which analysis of the sunshine environment. As mentioned above, by analysing relations between sunshine-ralated laws in each cities and those influential factors, it is possible to suggest the fundamental data of distance ratio between apartment houses when designing a new building with more optimized way.