• Title/Summary/Keyword: Distance Measuring Sensor

Search Result 169, Processing Time 0.026 seconds

New Vehicle Classification Algorithm with Wandering Sensor (원더링 센서를 이용한 차종분류기법 개발)

  • Gwon, Sun-Min;Seo, Yeong-Chan
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.6
    • /
    • pp.79-88
    • /
    • 2009
  • The objective of this study is to develop the new vehicle classification algorithm and minimize classification errors. The existing vehicle classification algorithm collects data from loop and piezo sensors according to the specification("Vehicle classification guide for traffic volume survey" 2006) given by the Ministry of Land, Transport and Maritime Affairs. The new vehicle classification system collects the vehicle length, distance between axles, axle type, wheel-base and tire type to minimize classification error. The main difference of new system is the "Wandering" sensor which is capable of measuring the wheel-base and tire type(single or dual). The wandering sensor obtains the wheel-base and tire type by detecting both left and right tire imprint. Verification tests were completed with the total traffic volume of 762,420 vehicles in a month for the new vehicle classification algorithm. Among them, 47 vehicles(0.006%) were not classified within 12 vehicle types. This results proves very high level of classification accuracy for the new system. Using the new vehicle classification algorithm will improve the accuracy and it can be broadly applicable to the road planning, design, and management. It can also upgrade the level of traffic research for the road and transportation infrastructure.

Analysis of Geospatial Information Construction Efficiency by 3D Laser Scanner Integrated with Total Station (3D 레이저 스캐너와 토털스테이션 통합에 의한 공간정보 구축의 효율성 분석)

  • Park, Joon-Kyu;Lee, Keun-Wang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.638-643
    • /
    • 2017
  • The 3D laser scanner operates by measuring the distance from the sensor to the target and operates on the same principle as Electronic Distance Measuring (EDM). Recently, 3D laser scanning technology has been rapidly developed in line with the strongly increasing demand for 3D information acquisition. Therefore, it is now possible to more easily acquire geometric information of various objects existing in real space. In this study, we constructed geospatial information by using new equipment which integrated 3D laser scanner and total station, and we suggest the possibility of using new technology for geospatial information construction by comparing and analyzing with existing methods. In the study result, we demonstrated the efficiency of the geospatial information constructed by integration of 3D laser scanner and total station. The proposed method is expected to shorten the time required for data acquisition compared to the existing method using the existing total station. Furthermore, it is possible to use various methods such as cross section analysis and volume calculation using the acquired data. In the future, spatial information construction by integration of 3D laser scanner and total station will help improve work efficiency in related fields.

Reliability of Muscle Evaluation with a Tactile Sensor System (촉각센서를 이용한 근육평가의 신뢰도 조사)

  • Oh, Young-Rak;Lee, Dong-Ju;Kim, Sung-Hwan;Kim, Mee-Eun;Kim, Ki-Suk
    • Journal of Oral Medicine and Pain
    • /
    • v.30 no.3
    • /
    • pp.337-344
    • /
    • 2005
  • A tactile sensor employs a piezoelectric element to detect contact frequency shifts and thereby measure the stiffness or softness of material such as tissue, which allows the sensor to be used in many fields of research for urology, cardiology, gynecology, sports medicine and caner detection and especially for cosmetics and skin care. In this study, reliability of the tactile sensor system was investigated with its manual application to the muscles susceptible to temporomandibular disorders. Stiffness and elasticity of anterior temporalis, masseter and trapezius muscles were calibrated bilaterally from 5 healthy men with an average of 24.5$\pm$0.94 years. The tactile sensor used in this study had a computer-controlled and motor-driven sensor unit which automatically pressed down on the skin surface over the muscles being measured and retracted, thereby providing the hysteresis curve. The slope of the tangent of the hysteresis curve (${\Delta}f/{\Delta}x$) is defined as stiffness of the muscle being measured and the distance between the two parts of the curve as its elasticity. To determine inter-examiner reliability, all the measurements were performed by the two examiners A and B, respectively and the same examination were repeated with an interval of 2 days for intra-examiner reliability. The results from this study demonstrated high reliability in measuring stiffness and elasticity of anterior temporalis, masseter and upper trapezius muscles using a tactile sensor system. It is suggested that the tactile sensor system can be a highly reproducible and effective instrument for quantitative evaluation of the muscle in head and neck region.

Measuring Water Content Characteristics by Using Frequency Domain Reflectometry Sensor in Coconut Coir Substrate (FDR(Frequency Domain Reflectometry)센서를 이용한 코코넛 코이어 배지내 수분특성 측정)

  • Park, Sung Tae;Jung, Geum Hyang;Yoo, Hyung Joo;Choi, Eun-Young;Choi, Ki-Young;Lee, Yong-Beom
    • Journal of Bio-Environment Control
    • /
    • v.23 no.2
    • /
    • pp.158-166
    • /
    • 2014
  • This experiment has investigated suitable methods to improve precision water content monitoring of coconut coir substrates to control irrigation by frequency domain reflectometry(FDR) sensors. Specifically, water content changes and variations were observed at different sensing distances and positions from the irrigation dripper location, and different spaces between the FDR sensors with or without noise filters. Commercial coconut coir substrates containing different ratios of dust and chips(10:0, 7:3, 5:5, 3:7) were used. On the upper side and the side of the substrates, a FDR sensor was used at 5, 10, 20, 30cm distances respectively from the irrigation dripper point, and water content was measured by time after the irrigation. In the glass beads, sensors were installed with or without noise filtering. Closer sensing distance had a higher water content increasing rate, regardless of different coir substrate ratios. There were no differencies of water content increasing rates in 10:0 and 3:7 substrates between the upper side and the side. Whereas, 7:3 and 5:5 substrates showed higher increasing rates on the upper side measurements. Substrates with higher ratios of chip(3:7) had lower increasing rates than others. And, with noise filters, the exatitude of measurement was improved because the variation and deviation were reduced. Therefore, in coconut coir with FDR sensors, an efficient water content measurment to control irrigations can be achieved by installing sensors closer to an irrigation point and upper side of substrates with noise filters.

The Application of CO2 and Hydrometer Sensor for Development of Real Time Measuring Method on CO2 Emission of Construction Equipment (건설장비의 CO2배출량 실시간 측정방법 개발을 위한 CO2 및 유속센서의 활용)

  • Jang, Won-Suk;Kim, Byung-Soo
    • Korean Journal of Construction Engineering and Management
    • /
    • v.14 no.2
    • /
    • pp.78-86
    • /
    • 2013
  • The researches for reduce $CO_2$ are going along animatedly in hole industry area. In construction area, the researches to minimize $CO_2$ emission are progressing variously. The researches to minimize $CO_2$ emission based on $CO_2$ emission. The method measuring $CO_2$ emission are using $CO_2$ emission coefficient on fuel consumption, LCA and an inter-industry relation table. Especially, the methods using the carbon emission coefficient based on fuel consumption are 3 types(Tier1~Tier3) of IPCC. Present, the most using method(Tier1) is using the fuel consumption and the carbon emission coefficient. But because this method do not effect each vehicle distance and driving environment, we can't calculate right $CO_2$ emission. Especially construction project's $CO_2$ emission could be different by project's characteristic. However, we can't apply these difference with present methods. So we need methodology calculating $CO_2$ emission by applying personal project's characteristic and these methodology's most important things is directly measuring $CO_2$ emission of construction equipment which use energy. The object of this study is to develop the $CO_2$ emission calculation methodology which occur in construction process, is to suggest ways to measure in real time $CO_2$ emission from construction equipment.

A Study on Development of Portable Concrete Crack Measurement Device Using Image Processing Technique and Laser Sensors (이미지 처리기법 및 레이저 센서를 이용한 휴대용 콘크리트 균열 측정 장치 개발에 관한 연구)

  • Seo, Seunghwan;Ohn, Syng-Yup;Kim, Dong-Hyun;Kwak, Kiseok;Chung, Moonkyung
    • Journal of the Korean Geosynthetics Society
    • /
    • v.19 no.4
    • /
    • pp.41-50
    • /
    • 2020
  • Since cracks in concrete structures expedite corrosion of reinforced concrete over a long period of time, regular on-site inspections are essential to ensure structural usability and prevent degradation. Most of the safety inspections of facilities rely on visual inspection with naked eye, so cost and time consuming are severe, and the reliability of results differs depending on the inspector. In this study, a portable measuring device that can be used for safety diagnosis and maintenance was developed as a device that measures the width and length of concrete cracks through image analysis of cracks photographed with a camera. This device captures the cracks found within a close distance (3 m), and accurately calculates the unit pixel size by laser distance measurement, and automatically calculates the crack length and width with the image processing algorithm developed in this study. In measurement results using the crack image applied to the experiment, the measurement of the length of a 0.3 mm crack within a distance of 3 m was possible with a range of about 10% error. The crack width showed a tendency to be overestimated by detecting surrounding pixels due to vibration and blurring effect during the binarization process, but it could be effectively corrected by applying the crack width reduction function.

Improvement of Altitude Measurement Algorithm Based on Accelerometer for Holding Drone's Altitude (드론의 고도 유지를 위한 가속도센서 기반 고도 측정 알고리즘 개선)

  • Kim, Deok Yeop;Yun, Bo Ram;Lee, Sunghee;Lee, Woo Jin
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.6 no.10
    • /
    • pp.473-478
    • /
    • 2017
  • Drones require altitude holding in order to achieve flight objectives. The altitude holding of the drone is to repeat the operation of raising or lowering the drone according to the altitude information being measured in real-time. When the drones are maintained altitude, the drone's altitude will continue to change due to external factors such as imbalance in thrust due to difference in motor speed or wind. Therefore, in order to maintain the altitude of drone, we have to exactly measure the continuously changing altitude of the drone. Generally, the acceleration sensor is used for measuring the height of the drones. In this method, there is a problem that the measured value due to the integration error accumulates, and the drone's vibration is recognized by the altitude change. To solve the difficulty of the altitude measurement, commercial drones and existing studies are used for altitude measurement together with acceleration sensors by adding other sensors. However, most of the additional sensors have a limitation on the measurement distance and when the sensors are used together, the calculation processing of the sensor values increases and the altitude measurement speed is delayed. Therefore, it is necessary to accurately measure the altitude of the drone without considering additional sensors or devices. In this paper, we propose a measurement algorithm that improves general altitude measurement method using acceleration sensor and show that accuracy of altitude holding and altitude measurement is improved as a result of applying this algorithm.

Development of Bioelectric Impedance Measurement System Using Multi-Frequency Applying Method

  • Kim, J.H.;Jang, W.Y.;Kim, S.S.;Son, J.M.;Park, G.C.;Kim, Y.J.;Jeon, G.R.
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.6
    • /
    • pp.368-376
    • /
    • 2014
  • In order to measure the segmental impedance of the body, a bioelectrical impedance measurement system (BIMS) using multi-frequency applying method and two-electrode method was implemented in this study. The BIMS was composed of constant current source, automatic gain control, and multi-frequency generation units. Three experiments were performed using the BIMS and a commercial impedance analyzer (CIA). First, in order to evaluate the performance of the BIMS, four RC circuits connected with a resistor and capacitor in serial and/or parallel were composed. Bioelectrical impedance (BI) was measured by applying multi-frequencies -5, 10, 50, 100, 150, 200, 300, 400, and 500 KHz - to each circuit. BI values measured by the BIMS were in good agreement with those obtained by the CIA for four RC circuits. Second, after measuring BI at each frequency by applying multi-frequency to the left and right forearm and the popliteal region of the body, BI values measured by the BIMS were compared to those acquired by the CIA. Third, when the distance between electrodes was changed to 1, 3, 5, 7, 9, 11, 13, and 15 cm, BI by the BIMS was also compared to BI from the CIA. In addition, BI of extracellular fluid (ECF) was measured at each frequency ranging from 10 to 500 KHz. BI of intracellular fluid (ICF) was calculated by subtracting BI of ECF measured at 500 kHZ from BI measured at seven frequencies ranging from 50 to 500 KHz. BI of ICF and ECF decreased as the frequency increased. BI of ICF sharply decreased at frequencies above 300 KHz.

A Study on the Development of the Position Detection System of Small Vessels for Collision Avoidance (충돌 회피를 위한 소형 선박의 위치 검출 시스템 개발에 관한 연구)

  • Le, Dang-Khanh;Nam, Teak-Kun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.2
    • /
    • pp.202-209
    • /
    • 2014
  • In this paper, a developed device for detecting target's location and avoiding collision is proposed. Velocity and acceleration model of target are derived to estimate target's information, i.e. position, velocity and acceleration considering process and measurement noise. Kalman filtering method applied to the estimation process and its results was confirmed by simulation. The distance measurements system using laser sensor for moving target system is also developed to confirm the effectiveness of the proposed scheme. Experiments to get information of moving target with velocity and acceleration model was executed. The data with filtering and without filtering was compared by experiments. Discontinuous measured data was changed to smooth and continuous data by Kalman filtering. It is confirmed that desired data was obtained by applying proposed scheme. UI for measuring and monitoring the target data is developed and visual and auditory alarm function is attached on the system Finally, position estimation system of moving target with good performance is achieved by low price equipments.

Monitoring of Misfiring Status of Ship Engines Using Minute Speed Changes in the Crankshaft (크랭크축의 미세속도변화를 이용한 선박엔진의 착화불량 상태 감시)

  • Kang, Ho Hyeon;Ahn, Jung Hwan;Kim, Hwa Young
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.1
    • /
    • pp.51-56
    • /
    • 2022
  • In this study an efficient method for detecting and monitoring engine misfiring, focusing on minute speed changes in the crankshaft is proposed., Its validity is verified using various misfiring cases. Typically, the crankshaft speed fluctuates around the normal value depending on the engine misfiring status. Even a minute speed change in the crankshaft can be estimated by measuring the rotation time of each tooth of the 118-tooth flywheel attached to the crankshaft with a 2-MHz timer. Therefore, a speed pattern for an in-line six-cylinder engine consists of 236 tooth rotation speeds corresponding to the two rotations of the crankshaft, in which all the cylinders complete four-stroke cycle. FFT analysis can reduce the number of components of a speed pattern from 236 to just four major components: - fundamental frequency_(f), 2f, 3f, 6f., - This makes the comparison of the misfiring cases simpler and faster. In the experiment, five engine status cases (one normal firing and, four misfiring cases) were simulated. While the 6f component was the largest for the normal case, the f component increased as misfiring occurred one, two apart, and two consecutive times. The 3D FFT pattern comprising the ratio of f, 2f, and 3f, 6f showed that the distance between the misfiring and normal states was larger