• Title/Summary/Keyword: Distance Feature

Search Result 825, Processing Time 0.036 seconds

Localization of a Monocular Camera using a Feature-based Probabilistic Map (특징점 기반 확률 맵을 이용한 단일 카메라의 위치 추정방법)

  • Kim, Hyungjin;Lee, Donghwa;Oh, Taekjun;Myung, Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.4
    • /
    • pp.367-371
    • /
    • 2015
  • In this paper, a novel localization method for a monocular camera is proposed by using a feature-based probabilistic map. The localization of a camera is generally estimated from 3D-to-2D correspondences between a 3D map and an image plane through the PnP algorithm. In the computer vision communities, an accurate 3D map is generated by optimization using a large number of image dataset for camera pose estimation. In robotics communities, a camera pose is estimated by probabilistic approaches with lack of feature. Thus, it needs an extra system because the camera system cannot estimate a full state of the robot pose. Therefore, we propose an accurate localization method for a monocular camera using a probabilistic approach in the case of an insufficient image dataset without any extra system. In our system, features from a probabilistic map are projected into an image plane using linear approximation. By minimizing Mahalanobis distance between the projected features from the probabilistic map and extracted features from a query image, the accurate pose of the monocular camera is estimated from an initial pose obtained by the PnP algorithm. The proposed algorithm is demonstrated through simulations in a 3D space.

Reconstruction of Head Surface based on Cross Sectional Contours (단면 윤곽선을 기반으로 한 두부표변의 재구성)

  • 한영환;성현경;홍승홍
    • Journal of Biomedical Engineering Research
    • /
    • v.18 no.4
    • /
    • pp.365-373
    • /
    • 1997
  • In this paper, a new method of the 3D(dimensional) image reconstruction is proposed to build up the 3D image from 2D images using digital image processing techniques and computer graphics. First, the new feature extraction algorithm that doesn't need various input parameters and is not affected by threshold is adopted This new algorithm extracts feature points by eliminating some undesirable points on the ground of the connectivity. Second, as the cast function to reconstruct surfaces using extracted feature points, the minimum distance measure between two plane images has been adopted According to this measure, the surface formation algorithm doesn't need complex calculation and takes the form of triangle or trapezoid To investigate usefulness, this approach has been applied to a head CT image and compared with other methods. Experimental comparisons show that the suggested algorithm yields better performance on feature extraction than others. In contrast with the other methods, the complex calculation for surface formation in the proposed algorithm is not necessary.

  • PDF

Vehicle Face Re-identification Based on Nonnegative Matrix Factorization with Time Difference Constraint

  • Ma, Na;Wen, Tingxin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.6
    • /
    • pp.2098-2114
    • /
    • 2021
  • Light intensity variation is one of the key factors which affect the accuracy of vehicle face re-identification, so in order to improve the robustness of vehicle face features to light intensity variation, a Nonnegative Matrix Factorization model with the constraint of image acquisition time difference is proposed. First, the original features vectors of all pairs of positive samples which are used for training are placed in two original feature matrices respectively, where the same columns of the two matrices represent the same vehicle; Then, the new features obtained after decomposition are divided into stable and variable features proportionally, where the constraints of intra-class similarity and inter-class difference are imposed on the stable feature, and the constraint of image acquisition time difference is imposed on the variable feature; At last, vehicle face matching is achieved through calculating the cosine distance of stable features. Experimental results show that the average False Reject Rate and the average False Accept Rate of the proposed algorithm can be reduced to 0.14 and 0.11 respectively on five different datasets, and even sometimes under the large difference of light intensities, the vehicle face image can be still recognized accurately, which verifies that the extracted features have good robustness to light variation.

Segmentation of Continuous Speech based on PCA of Feature Vectors (주요고유성분분석을 이용한 연속음성의 세그멘테이션)

  • 신옥근
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.2
    • /
    • pp.40-45
    • /
    • 2000
  • In speech corpus generation and speech recognition, it is sometimes needed to segment the input speech data without any prior knowledge. A method to accomplish this kind of segmentation, often called as blind segmentation, or acoustic segmentation, is to find boundaries which minimize the Euclidean distances among the feature vectors of each segments. However, the use of this metric alone is prone to errors because of the fluctuations or variations of the feature vectors within a segment. In this paper, we introduce the principal component analysis method to take the trend of feature vectors into consideration, so that the proposed distance measure be the distance between feature vectors and their projected points on the principal components. The proposed distance measure is applied in the LBDP(level building dynamic programming) algorithm for an experimentation of continuous speech segmentation. The result was rather promising, resulting in 3-6% reduction in deletion rate compared to the pure Euclidean measure.

  • PDF

Performance Improvements for Silence Feature Normalization Method by Using Filter Bank Energy Subtraction (필터 뱅크 에너지 차감을 이용한 묵음 특징 정규화 방법의 성능 향상)

  • Shen, Guanghu;Choi, Sook-Nam;Chung, Hyun-Yeol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.7C
    • /
    • pp.604-610
    • /
    • 2010
  • In this paper we proposed FSFN (Filter bank sub-band energy subtraction based CLSFN) method to improve the recognition performance of the existing CLSFN (Cepstral distance and Log-energy based Silence Feature Normalization). The proposed FSFN reduces the energy of noise components in filter bank sub-band domain when extracting the features from speech data. This leads to extract the enhanced cepstral features and thus improves the accuracy of speech/silence classification using the enhanced cepstral features. Therefore, it can be expected to get improved performance comparing with the existing CLSFN. Experimental results conducted on Aurora 2.0 DB showed that our proposed FSFN method improves the averaged word accuracy of 2% comparing with the conventional CLSFN method, and FSFN combined with CMVN (Cepstral Mean and Variance Normalization) also showed the best recognition performance comparing with others.

The Alignment of Triangular Meshes Based on the Distance Feature Between the Centroid and Vertices (무게중심과 정점 간의 거리 특성을 이용한 삼각형 메쉬의 정렬)

  • Minjeong, Koo;Sanghun, Jeong;Ku-Jin, Kim
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.12
    • /
    • pp.525-530
    • /
    • 2022
  • Although the iterative closest point (ICP) algorithm has been widely used to align two point clouds, ICP tends to fail when the initial orientation of the two point clouds are significantly different. In this paper, when two triangular meshes A and B have significantly different initial orientations, we present an algorithm to align them. After obtaining weighted centroids for meshes A and B, respectively, vertices that are likely to correspond to each other between meshes are set as feature points using the distance from the centroid to the vertices. After rotating mesh B so that the feature points of A and B to be close each other, RMSD (root mean square deviation) is measured for the vertices of A and B. Aligned meshes are obtained by repeating the same process while changing the feature points until the RMSD is less than the reference value. Through experiments, we show that the proposed algorithm aligns the mesh even when the ICP and Go-ICP algorithms fail.

Target identification for visual tracking

  • Lee, Joon-Woong;Yun, Joo-Seop;Kweon, In-So
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.145-148
    • /
    • 1996
  • In moving object tracking based on the visual sensory feedback, a prerequisite is to determine which feature or which object is to be tracked and then the feature or the object identification precedes the tracking. In this paper, we focus on the object identification not image feature identification. The target identification is realized by finding out corresponding line segments to the hypothesized model segments of the target. The key idea is the combination of the Mahalanobis distance with the geometrica relationship between model segments and extracted line segments. We demonstrate the robustness and feasibility of the proposed target identification algorithm by a moving vehicle identification and tracking in the video traffic surveillance system over images of a road scene.

  • PDF

How Anaphors Recover Their References

  • Lee, Hyeran
    • Korean Journal of English Language and Linguistics
    • /
    • v.1 no.4
    • /
    • pp.629-649
    • /
    • 2001
  • This paper aims to provide an account for the English anaphors under the framework of the recent development of minimalism (Chomsky 1999, 2001). I propose that the anaphor has the uninterpretable [a] feature. The Agree operation erases the [a] feature by feature match. Once the [a] is deleted, the derivation converges, providing a proper interpretation of the anaphor. When there is no matching phi-features, the [a] cannot be eliminated, inducing the derivation to crash. The Agree operation can account for not only the typical local binding cases in English but the apparent long-distance binding cases in the picture-DP and expletive constructions. Consequently, the traditional concept of the binding domain and dichotomy between local and long-distance types are abandoned in favor of the analysis under the framework of minimalism. The minimalist accounts thus maximally simplifies the binding principles, using the general operation Agree only.

  • PDF

A Clustering Algorithm Using the Ordered Weight of Self-Organizing Feature Maps (자기조직화 신경망의 정렬된 연결강도를 이용한 클러스터링 알고리즘)

  • Lee Jong-Sup;Kang Maing-Kyu
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.31 no.3
    • /
    • pp.41-51
    • /
    • 2006
  • Clustering is to group similar objects into clusters. Until now there are a lot of approaches using Self-Organizing feature Maps (SOFMS) But they have problems with a small output-layer nodes and initial weight. For example, one of them is a one-dimension map of c output-layer nodes, if they want to make c clusters. This approach has problems to classify elaboratively. This Paper suggests one-dimensional output-layer nodes in SOFMs. The number of output-layer nodes is more than those of clusters intended to find and the order of output-layer nodes is ascending in the sum of the output-layer node's weight. We un find input data in SOFMs output node and classify input data in output nodes using Euclidean distance. The proposed algorithm was tested on well-known IRIS data and TSPLIB. The results of this computational study demonstrate the superiority of the proposed algorithm.

PCA Covariance Model Based on Multiband for Speaker Verification (화자 확인을 위한 다중대역에 기반한 주성분 분석 공분산 모델)

  • Choi, Min-Jung;Lee, Youn-Jeong;Seo, Chang-Woo
    • Speech Sciences
    • /
    • v.14 no.2
    • /
    • pp.127-135
    • /
    • 2007
  • Feature vectors of speech are generally extracted from whole frequency domain. The inherent character of a speaker is located in the low band or high band frequency. However, if the speech is corrupted by narrowband noise with concentrated energy, speaker verification performance is reduced as the individual characteristic is removed. In this paper, we propose a PCA Covariance Model based on the multiband to extract the robust feature vectors against the narrowband noise. First, we divide the overall frequency band into several subbands. Second, the correlation of feature vectors extracted independently from each subband is removed by PCA. The distance obtained from each subband has different distribution. To normalize against the different distribution, we moved the value into the normalized distribution through the mapping function. Finally, the represented value applying the weighting function is used for speaker verification. In the experiments, the proposed method shows better performance of the speaker verification and reduces the computation.

  • PDF